poj1990两个树状数组

题意:

有一群牛站在一条线上并且他们想要交流;

然而他们都有点聋;

所以他们具备一个能听的声音的最低值v;

并且他们有一个位置x;

题目让你求每两头牛交流之后的和;

这个和的由来是由距离乘以max(v[i], v[j]);


理解:

想了半天,,知道用树状数组;

但是确实不造怎么用;

然后看了大神的理解;

发现要用两个树状数组;

而且还要推一个关系,并且这个关系就是用树状数组维护的;

其意思就是将牛根据v排序,从小到大;

之后可以知道每头牛的max(v[i], v[j])值就是当前牛的v值;

然后计算位置在牛右边的牛的个数,即位置小于当前牛的个数r;

再来计算位置在牛左边的牛的个数,即位置大于当前牛的个数l;

这个就需要用两个树状数组维护数据;

一个维护位置的个数t_bit,一个维护距离c_bit;

个数都好说;

就是要理解距离这一点;

距离的求法可以看这组数据:

2 3 5 7 8

我们求5到前面两个的距离的和,就是5 - 2, 5 - 3.这是O(n);

而用树状数组就是把前面的两个维护了之后可以求到sum = 2 + 3;

之后用 5 * 2 - sum 就求得了距离...

而后面两个是一样的,只不过是调转一下公式罢了, 这样时O(log n);

就这样可以求到当前牛到已经进入树状数组的牛的距离;

然后就可以求得总的和了;

总和的公式就是:

x[i] * (距离) 0 <= i < n;


代码如下:


#include <cstdio>

#include <algorithm>
#include <vector>

using namespace std;

typedef pair<int, int> pii;
typedef long long ll;

#define x first
#define y second

ll sum(vector<ll> &bit, int i)
{
    ll s = 0;
    while (i > 0)
    {
        s += bit[i];
        i -= i & -i;
    }
    return s;
}

void update(vector<ll> &bit, int i, int num)
{
    while (i <= 40000)
    {
        bit[i] += num;
        i += i & -i;
    }
}

int main()
{
    int n;
    scanf("%d", &n);
    vector<pii> v_n(n);
    for (int i = 0; i < n; ++i)
        scanf("%d%d", &v_n[i].x, &v_n[i].y);
    sort(v_n.begin(), v_n.end());

    vector<ll> c_bit(50000, 0), t_bit(50000, 0);  //两个bit
    ll ans = 0;
    for (int i = 0; i < n; ++i)
    {
        ll l = sum(t_bit, v_n[i].y - 1); //左边个数
        ll r = sum(t_bit, 49999) - sum(t_bit, v_n[i].y); // 右边个数
        l = l * v_n[i].y - sum(c_bit, v_n[i].y - 1); // 左边距离
        r = sum(c_bit, 49999) - sum(c_bit, v_n[i].y) - r * v_n[i].y; // 右边距离
        ans += v_n[i].x *(l + r);
        update(t_bit, v_n[i].y, 1);
        update(c_bit, v_n[i].y, v_n[i].y);
    }
    printf("%lld\n", ans);

    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值