poj3260&&hdu3591 多重背包+完全背包

题目链接:

poj:点击打开链接

hdu:点击打开链接


题意:

一个人要买 t 元钱的东西;

他有 n 种钱;

每种钱有 v[i] 的价值;

每种钱有 w[i] 个;

然后他要在花 t 这么多钱的同时用最少的硬币数量;

并且商店找回的硬币数量也是最少的;

如果不能买或者找不回那么多钱就输出 -1;


理解:

两题题意一模一样;

所以放一堆写题解;

并不造怎么做;

神解释说,多重背包加完全背包基础题;

多重背包很明显从顾客一方就可以看出;

而完全背包是从商店一方看出来的;

因为商店的硬币数是无限的;

这样在某一个价值 i 的状态下;

就存在顾客的最少硬币数 muldp[i] 加上商店的最少硬币数 fuldp[i - t] 是最少使用的硬币数;

多重背包递推式:muldp[i] = min(muldp[i], muldp[i - mul * v[i]] + mul);

完全背包递推式:fuldp[i] = min(fuldp[i], fuldp[i - v[i]] + 1);

其中的值根据代码定义;

初始值都为无穷大;

muldp[0] = 0;

fuldp[0] = 0;

ans = min(muldp[i] + fuldp[i - t]);

其中这里有个最大值边界问题;

因为 t 是正好用那么多钱;

而实际要多给钱,然后商店找钱;

所以要估算最多要多给多少钱;

但一般算一下都不会太大,所以给个几万就行了;

其实因为价值最大是 120;

那么超过这个价值的值商店都能找回来;

所以只需算到 t + 120;

也不知道这种说法对不对。。


代码如下:


poj:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <stack>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int MIN_INF = 1e-7;
const int MAX_INF = (1e9) + 7;

#define X first
#define Y second

int muldp[555555], fuldp[555555];
int v[222], w[222];

int main() {
    int n, t;
    cin >> n >> t;
    for (int i = 0; i < n; ++i) {
        cin >> v[i];
    }
    for (int i = 0; i < n; ++i) {
        cin >> w[i];
    }

    fill(muldp, muldp + 200100, MAX_INF);
    fill(fuldp, fuldp + 200100, MAX_INF);
    muldp[0] = 0;
    for (int i = 0; i < n; ++i) {
        int num = w[i];
        for (int k = 1; num > 0; k <<= 1) {
            int mul = min(num, k);
            for (int j = 55000; j >= mul * v[i]; --j) {
                muldp[j] = min(muldp[j], muldp[j - mul * v[i]] + mul);
            }
            num -= k;
        }
    }

    fuldp[0] = 0;
    for (int i = 0; i < n; ++i) {
        for (int j = v[i]; j < 55001; ++j) {
            fuldp[j] = min(fuldp[j], fuldp[j - v[i]] + 1);
        }
    }

    int ans = MAX_INF;
    for (int i = t; i < 55001; ++i) {
        ans = min(ans, muldp[i] + fuldp[i - t]);
    }
    cout << (ans == MAX_INF ? -1 : ans) << endl;

    return 0;
}


hdu:

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <ctime>

#include <iostream>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <stack>

using namespace std;

typedef long long LL;
typedef pair<int, int> PII;

const int MIN_INF = 1e-7;
const int MAX_INF = (1e9) + 7;

#define X first
#define Y second

int muldp[555555], fuldp[555555];
int v[222], w[222];

int main() {
    int n, t, I = 1;
    while (cin >> n >> t && n + t) {
        for (int i = 0; i < n; ++i) {
            cin >> v[i];
        }
        for (int i = 0; i < n; ++i) {
            cin >> w[i];
        }

        fill(muldp, muldp + 200100, MAX_INF);
        fill(fuldp, fuldp + 200100, MAX_INF);
        muldp[0] = 0;
        for (int i = 0; i < n; ++i) {
            int num = w[i];
            for (int k = 1; num > 0; k <<= 1) {
                int mul = min(num, k);
                for (int j = 55000; j >= mul * v[i]; --j) {
                    muldp[j] = min(muldp[j], muldp[j - mul * v[i]] + mul);
                }
                num -= k;
            }
        }

        fuldp[0] = 0;
        for (int i = 0; i < n; ++i) {
            for (int j = v[i]; j < 55001; ++j) {
                fuldp[j] = min(fuldp[j], fuldp[j - v[i]] + 1);
            }
        }

        int ans = MAX_INF;
        for (int i = t; i < 55001; ++i) {
            ans = min(ans, muldp[i] + fuldp[i - t]);
        }
        cout << "Case " << I++ << ": ";
        cout << (ans == MAX_INF ? -1 : ans) << endl;
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值