【题解】1122 Hamiltonian Cycle (25分)⭐⭐⭐ 【哈密顿回路】

【题解】1122 Hamiltonian Cycle (25分)⭐⭐⭐ 【哈密顿回路】

题意:

给出一个无向图
在给出若干组路径,要求判断该路径是否为哈密顿回路

题解:

我们首先需要学习一下什么是哈密顿回路:从某一点出发,经过所有点恰好一次并且回到原点的回路
题中并没有给出什么是Hamilton Cycle,我们也可以通过样例自己猜一下

经验小结:

1.欧拉回路 图G中经过每条边一次并且仅一次的回路称作欧拉回路。
2.欧拉路径 图G中经过每条边一次并且仅一次的路径称作欧拉路径。
3.欧拉图 存在欧拉回路的图称为欧拉图。
4.半欧拉图 存在欧拉路径但不存在欧拉回路的图称为半欧拉图。
5.哈密顿回路:经过每个点一次并且回到起点

回路转一圈后即回到原点,路径不需要

另外要小心对于MAXN的定义,输入的点可不止N个,最后一个测试点

#include<bits/stdc++.h>
using namespace std;
#define ms(x, n) memset(x,n,sizeof(x));
typedef  long long LL;
const int INF = 1 << 30;
const int MAXN = 2010;

int G[MAXN][MAXN], N, M, Q, k, v[MAXN];
set<int> vis;
bool judge(){
    if(v[1] != v[k] || k-1 != N || vis.size() != N) //vis==N且k-1==N说明所有节点均访问且仅访问一次
        return false;
    for(int i = 1; i < k; ++i)
        if(!G[v[i]][v[i+1]])
            return false;
    return true;
}
int main() {
    ios::sync_with_stdio(false);
    int a, b;
    cin >> N >> M;
    while(M--){
        cin >> a >> b;
        G[a][b] = G[b][a] = 1;
    }
    cin >> Q;
    while(Q--){
        cin >> k;
        vis.clear();
        for(int i = 1; i <= k; ++i){
            cin >> v[i];
             vis.insert(v[i]);
        }
        if(judge())
            cout << "YES\n";
        else
            cout << "NO\n";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值