【题解】1122 Hamiltonian Cycle (25分)⭐⭐⭐ 【哈密顿回路】
题意:
给出一个无向图
在给出若干组路径,要求判断该路径是否为哈密顿回路
题解:
我们首先需要学习一下什么是哈密顿回路:从某一点出发,经过所有点恰好一次并且回到原点的回路
题中并没有给出什么是Hamilton Cycle,我们也可以通过样例自己猜一下
经验小结:
1.欧拉回路 图G中经过每条边一次并且仅一次的回路称作欧拉回路。
2.欧拉路径 图G中经过每条边一次并且仅一次的路径称作欧拉路径。
3.欧拉图 存在欧拉回路的图称为欧拉图。
4.半欧拉图 存在欧拉路径但不存在欧拉回路的图称为半欧拉图。
5.哈密顿回路:经过每个点一次并且回到起点
回路转一圈后即回到原点,路径不需要
另外要小心对于MAXN的定义,输入的点可不止N个,最后一个测试点
#include<bits/stdc++.h>
using namespace std;
#define ms(x, n) memset(x,n,sizeof(x));
typedef long long LL;
const int INF = 1 << 30;
const int MAXN = 2010;
int G[MAXN][MAXN], N, M, Q, k, v[MAXN];
set<int> vis;
bool judge(){
if(v[1] != v[k] || k-1 != N || vis.size() != N) //vis==N且k-1==N说明所有节点均访问且仅访问一次
return false;
for(int i = 1; i < k; ++i)
if(!G[v[i]][v[i+1]])
return false;
return true;
}
int main() {
ios::sync_with_stdio(false);
int a, b;
cin >> N >> M;
while(M--){
cin >> a >> b;
G[a][b] = G[b][a] = 1;
}
cin >> Q;
while(Q--){
cin >> k;
vis.clear();
for(int i = 1; i <= k; ++i){
cin >> v[i];
vis.insert(v[i]);
}
if(judge())
cout << "YES\n";
else
cout << "NO\n";
}
return 0;
}