【R语言】相关系数图

相关系数图通常用于可视化两个变量之间的相关关系。相关系数是衡量两个变量之间线性关系强度和方向的统计量。它的取值范围在 -1 到 1 之间,-1 表示完全负相关,1 表示完全正相关,0 表示无相关性。

先一起导入这几个包

library(ggplot2)  
library(RColorBrewer)  
library(reshape2) 
library(corrplot)
library(matlab)

示意图:热力图

 示例代码:

set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)  #造数据
mat <- round(cor(mycars), 2)  #计算各变量之间的相关系数,并保留两位小数
mydata <- melt(mat) #数据转换为长格式数据框
# 修改列名
colnames(mydata)<-c("变量1","变量2","相关系数值")
ggplot(mydata, aes(x = 变量1, y = 变量2, fill = 相关系数值,label=相关系数值)) +  
  geom_tile(colour="black") +
  geom_text(size=3,colour="white")+
  coord_equal()+
  scale_fill_gradientn(colours=c(brewer.pal(7,"Set1")[2],"gray",brewer.pal(7,"Set1")[1]),na.value=NA) + 
  theme(panel.background=element_rect(fill="white",colour=NA),
        panel.grid.major = element_line(colour = "grey60",size=.25,linetype ="dotted" ),
        panel.grid.minor = element_line(colour = "grey60",size=.25,linetype ="dotted" ),
        text=element_text(size=15),
        plot.title=element_text(size=15,family="myfont",hjust=.5)
  )

示例图:气泡图

示例代码:

set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)
mat <- round(cor(mycars), 2)  #计算各变量之间的相关系数,并保留两位小数
mydata <- melt(mat) #数据转换为长格式数据框
colnames(mydata)<-c("变量1","变量2","相关系数值")
mydata$AbsValue<-abs(mydata$相关系数值)
ggplot(mydata, aes(x= 变量1 , y=变量2)) +
  geom_point(aes(size=AbsValue,fill = 相关系数值), shape=21, colour="black") +
  scale_fill_gradientn(colours=c(brewer.pal(7,"Set1")[2],"gray",brewer.pal(7,"Set1")[1]),na.value=NA)+
  scale_size_area(max_size=12, guide=FALSE) +
  theme(
    text=element_text(size=15,face="plain",color="black"),
    axis.title=element_text(size=13,face="plain",color="black"),
    axis.text = element_text(size=12,face="plain",color="black"),
    legend.position="right"
  )

示例图:椭圆图

 示例代码;

set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)
mat <- round(cor(mycars), 2)  #计算各变量之间的相关系数,并保留两位小数
color<-colorRampPalette(c(brewer.pal(7,"Set1")[2],"gray",brewer.pal(7,"Set1")[1]))(100)
corrplot(mat, method="ellipse",order ="alphabet",pch.col = "black",col=color)

示例图:气泡标签图

示例代码:

set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)
mat <- round(cor(mycars), 2)  #计算各变量之间的相关系数,并保留两位小数
color<-colorRampPalette(c(brewer.pal(7,"Set1")[2],"gray",brewer.pal(7,"Set1")[1]))(100)
corrplot.mixed(mat,order ="alphabet",pch.col = "black",bg = "grey80", lower.col = color, upper.col = color)

 示例图:彩色方块+饼图

示例代码:

library(corrgram)
set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)
corrgram(mycars, order=TRUE, lower.panel=panel.shade, upper.panel=panel.pie, text.panel=panel.txt, main="彩色方块+饼图")

 示例图:散点形式图

 示例代码:

library(corrgram)
set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)
corrgram(mycars, order=TRUE, lower.panel=panel.ellipse, upper.panel=panel.pts, text.panel=panel.txt, diag.panel=panel.minmax, main="") 

 示例图:彩色方块图

 示例代码:

library(corrgram)
set.seed(123)
mycars <- data.frame(
  a = rpois(50, lambda = 300),
  b = rgamma(50, shape = 2, scale = 10),
  c = rchisq(50, df = 3),
  d = rbeta(50, shape1 = 2, shape2 = 5),
  e = rexp(50, rate = 0.1),
  f = rnorm(50, mean = 20, sd = 5),
  g = sample(4:8, 50, replace = TRUE),
  h = rnorm(50, mean = 100, sd = 10),
  i = rnorm(50, mean = 10, sd = 20),
  j = rnorm(50, mean = 1, sd = 30),
  k = rnorm(50, mean = 0, sd = 100),
  l = rnorm(50, mean = -1, sd = 30),
  m = rnorm(50, mean = -10, sd = 20),
  n = rnorm(50, mean = -100, sd = 10)
)
corrgram(mycars, order=NULL, lower.panel=panel.shade, upper.panel=NULL, text.panel=panel.txt, main="彩色方块图")

参考:

第4章 数据关系型图表/图4-8-1_相关系数热力图.R · EasyShu/Beautiful-Visualization-with-R - 码云 - 开源中国 (gitee.com)

Correlogram 与 corrgram 库 – R Graph 库 (r-graph-gallery.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值