树状数组及应用

目录

1.树状数组的概念与基本编码

1.1.引导

1.2.lowbit(x)

1.3.树状数组的编码

2.树状数组的基本应用

2.1.单点修改+区间查询

2.2.区间修改+单点查询

例题:

2.3.区间修改+区间查询

例题:


如果数列A是静态不变的,那么处理前缀和复杂度为O(n),查询为O(1),但如果序列是动态变化的,如改变其中一个元素,那么就需要重新计算前缀和,如果每次查询都有变化,那么复杂度会大幅度增加。

有两种数据结构可以高效的处理这个问题:树状数组与线段树。

1.树状数组的概念与基本编码

1.1.引导

如图所示,c[1] = A[1], c[2] = c[1] + A[2], c[3] = A[3], c[4] = c[2] + c[3] + A[4], ... , c[8] = c[4] + c[6] + c[7] + A[8]。

利用c数组可以高效的完成以下两个操作。

(1)查询,即求前缀和sum。
(2)维护,即元素a发生变化时,能以O(log_2(n))的高效率修改c[] 的值。

结论:

(1)查询过程是每次去掉二进制的最后一个1。例如,求sum[7]:

  1. sum[7] += c[7]
  2. 7的二进制是111,去掉最后一个1,得110,即c[6],所以sum[7] += c[6]
  3. 110,去掉最后一个1,得100,sum[7] += c[4]
  4. 100,去掉最后一个1就没有了

故sum[7] = c[7] + c[6] + c[4]

(2)维护的过程是每次在二进制最后的1上加1。例如,更新a[3]:

  1. 3的二进制是11,在最后一个1上加1,得100,所以修改c[4];
  2. 100,在最后一个1上加1,得1000,所以修改c[8];
  3. 继续修改c[16],c[32]...

树状数组的关键就是找到最后一个1。

1.2.lowbit(x)

lowbit(x) = x & (-x),功能为找到x的二进制数最后一个1。其原理是利用负数的补码,例如x = 6 = 000110,(-x)_{} 补 = 111010,那么x & (-x) = 10 = 2;

lowbit(x) 部分结果如下:

x

x的二进制

lowbit(x)

tree[x]数组

1

1

1

tree[1] = a1

2

10

2

tree[2] = a2 + a1

3

11

1

tree[3] = a3

4

100

4

tree[4] = a4 + a3+ a2+ a1

5

101

1

tree[5] = a5

6

110

2

tree[6] = a6 + a5

7

111

1

tree[7] = a7

令m = lowbit(x),tree[x]的值是把a_{x}和他前面共m个数相加的结果。

tree[]数组是通过lowbit计算出的树状数组,它能够以二分的复杂度存储一个数列的数据,具体的说,tree[x]存储的是区间[x - lowbit(x) + 1, x]的每个数的和。

1.3.树状数组的编码

下面给出单点修改+区间查询的代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lowbit(x) (x & (-x))
const int N = 1000;
int tree[N];
void update(int x, int d) {//单点修改,修改玄素a[x],a[x] = a[x] + d
    while (x <= N) {
        tree[x] += d;
        x += lowbit(x);
    }
}
ll sum(int x) {//查询前缀和:返回前缀和sum = a[1] + a[2] + .., + a[x]
    ll ans = 0;
    while (x > 0) {
        ans += tree[x];
        x -= lowbit(x);
    }
    return ans;
}
void solve() {
    int n;
    cin >> n;
    vector<ll> a(n + 1, 0);//a[0]不用
    memset(tree, 0, sizeof(tree));
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        update(i, a[i]);
    }
    //查询区间和:
    cout << "Old : sum([1,n-1]):" << sum(n - 1) - sum(0) << endl;
    //模拟一次修改,a[n-1] + 100
    update(n - 1, 100);
    cout << "New : sum([1,n-1]):" << sum(n - 1) - sum(0) << endl;
}
int main() {
    ios::sync_with_stdio;
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}
/*
输入:
10
4 5 6 7 8 9 10 11 12 13
输出:
Old : sum([1,n-1]):72
New : sum([1,n-1]):172
*/

此代码过程:

(1)初始化:先清空数组tree,然后读取a数组每一个元素,用update() 逐步处理这n个数,得到tree[]数组;
(2)求前缀和:用sum()计算,求和基于tree数组;
(3)单点修改:执行update()函数,修改数组tree[]。

2.树状数组的基本应用

2.1.单点修改+区间查询

1.1.3.树状数组的编码已经给出

2.2.区间修改+单点查询

利用差分是前缀和的逆运算来求解

例题:

两种解法:

第一种,单纯的差分数组

#include<bits/stdc++.h>
using namespace std;
int n, a, b, diff[100002];
int main() {
	ios::sync_with_stdio(false);
	cin.tie(0);
	while (cin >> n && n != 0) {
		for (int i = 0; i <= n; i++) {
			diff[i] = 0;
		}
		for (int i = 0; i < n; i++) {
			cin >> a >> b;
			diff[a] += 1;
			diff[b + 1] -= 1;
		}
		diff[1] += diff[0];
		cout << diff[1];
		for (int i = 2; i <= n; i++) {
			diff[i] += diff[i - 1];
			cout << ' ' << diff[i];
		}
	}
	return 0;
}

 第二种,利用树状数组

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lowbit(x) (x & (-x))
const int N = 100010;
int tree[N];
void update(int x, int d) {
    while (x <= N) {
        tree[x] += d;
        x += lowbit(x);
    }
}
ll sum(int x) {
    ll ans = 0;
    while (x > 0) {
        ans += tree[x];
        x -= lowbit(x);
    }
    return ans;
}
void solve() {
    int n;
    while (cin >> n && n != 0) {
        memset(tree, 0, sizeof(tree));
        for (int i = 1; i <= n; i++) {
            int L, R;
            cin >> L >> R;
            update(L, 1);
            update(R + 1, -1);
        }
        for (int i = 1; i <= n; i++) {
            if (i != n)cout << sum(i) << ' ';
            else cout << sum(i) << endl;
        }
    }
}
int main() {
    ios::sync_with_stdio;
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}

2.3.区间修改+区间查询

完成区间修改需要一个tree,区间查询也需要一个tree,所以可以利用两个tree达成此要求

a_{1}+a_{2}+...+a_{k - 1 }+a_{k}
=d_{1} + (d_{1}+d_{2}) +... + \sum_{i=1}^{k-1}d_{i}+\sum_{i=1}^{k}d_{i}
=k\sum_{i =1 }^{k}d_{i} - \sum_{i =1 }^{k}(i-1)d_{i}

所以可以分别处理d和(i-1)d两个数组的树状数组

例题:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define lowbit(x) (x & (-x))
const int N = 100010;
ll tree1[N], tree2[N];
void update1(ll x, ll d) {
    while (x <= N) {
        tree1[x] += d;
        x += lowbit(x);
    }
}
ll sum1(ll x) {
    ll ans = 0;
    while (x > 0) {
        ans += tree1[x];
        x -= lowbit(x);
    }
    return ans;
}
void update2(ll x, ll d) {
    while (x <= N) {
        tree2[x] += d;
        x += lowbit(x);
    }
}
ll sum2(ll x) {
    ll ans = 0;
    while (x > 0) {
        ans += tree2[x];
        x -= lowbit(x);
    }
    return ans;
}
void solve() {
    ll n, m;
    memset(tree1, 0, sizeof(tree1));
    memset(tree2, 0, sizeof(tree2));
    cin >> n >> m;
    ll old = 0, a;
    for (int i = 1; i <= n; i++) {
        cin >> a;
        update1(i, a - old);
        update2(i, (i - 1) * (a - old));
        old = a;
    }
    while (m--) {
        ll q, L, R, d;
        cin >> q;
        if (q == 1) {
            cin >> L >> R >> d;
            update1(L, d);
            update1(R + 1, -d);
            update2(L, (L - 1) * d);
            update2(R + 1, -R * d);
        }
        else {
            cin >> L >> R;
            cout << R * sum1(R) - sum2(R) - (L - 1) * sum1(L - 1) + sum2(L - 1) << endl;
        }
    }
}
int main() {
    ios::sync_with_stdio;
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}

  • 35
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lin..6

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值