砝码称重原理讲解

文章讨论了如何用最少的砝码称出1到n克整数重量物品的问题,通过分析砝码的排列组合得出公式,确定最少砝码数量和每个砝码的重量。着重于组合数学在天平称重问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 砝码称重问题

有一个天平(天平两边均可放置物品),想要用它称出1~n克之间所有重量为整数克的物品。

问题一:至少需要多少个砝码?

问题二:每个砝码各重多少克?

  • 题目举例理解

比如题目中的n=4,那么就需要称重量为1g、2g、3g、4g的四种物品;

我们可以使用两个重量分别为 1g 和 3g 的砝码处理。

1g重物 = 1g砝码

2g重物 + 1g砝码 = 3g砝码

3g重物 = 3g砝码

4g重物 = 3g砝码 + 1g砝码

这样就将四种重量的物品称出来了。

  • 问题处理分析
    • 问题一:至少需要多少个砝码?

首先我们要知道一个砝码只有3种使用方式:放在天平左边、放在天平右边、不放。

根据排列组合的方式,两个砝码就会有9中排列方式了,如图。

计算方式就是3*3 = 9。

同理,如果有3个砝码,那么排列方式就是在两个砝码排列方式的基础上再乘3。

即 3的三次方 = 27;

下一步:我们在知道了砝码可以有多少中排列方式以后,需要知道这些排列方式可以称出多少种不同的重量。我们以两个砝码(1g和3g)的排列组合为例,看一下9种排列方式能称出多少种重量。

左1 左 3 => 4       左1 右3  => 2      左1 右空  => 1

右1 右3  => 4       右1 左 3 => 2      右1 右空  => 1

左空 左 3 => 3       左空 右3  => 3      左空 右空  => 0

可以看到会出现一种天平上不放砝码的情况,是无效组合无法称出重量。剩余的其他组合称出的重量均会重复1次。最后9种不同的排列组合,只称出了4种不同的重量:1  2  3  4

所以我们可以总结出一个公式:

设:有k个砝码最多可以称出的重量为n

        n = k的有效排列组合 / 2

        k的有效排列组合 = 3的k次方 -1

        n = (3的k次方 -1) / 2

所以这个问题就转化成了:(3的k次方 -1) / 2 >= n,求k的最小值。

  • 问题二:每个砝码重多少克?​​​​​​​

在k为1的时候,最多只能称一个重量即1g。砝码重1g

在k为2的时候,最多能称(3的k次方 -1) / 2 = 4 。因为我们需要称重是连续的,所以是4g。砝码为1g和3g

在k为3的时候,最后能称(3的k次方 -1) / 2 = 13 。砝码为1g、3g和13-1-3=9g

以此类推,可以发现砝码的重量为从 3的零次方~3的(k-1)次方 

当然这是以最多的排列方式计算的,并不是唯一解。比如n=3时,我们可以根据以上方法使用1g和3g的砝码。同时我们也可以使用1g和2g的砝码。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值