动态规划--矩阵链乘法

1.两个矩阵乘法

def matrix_multipy(A, B):
    '''
    乘法得到的是一个[A.rows,B.cols]的矩阵, 相当于A.rows个向量的B.cols次的向量线性加权
    '''
    if not A.shape[1]==B.shape[0]:
        #A组中向量的维度与B组中向量的维度一致
        print("error!")
    else:
        #将每一个元素都初始化为0
        C = np.zeros([A.shape[0], B.shape[1]])
        for i in range(A.shape[0]):
            for j in range(B.shape[1]):
                for k in range(A.shape[1]):
                    C[i][j] += A[i][k]*B[k][j]
    return C
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值