落谷 P3373 - 线段树多重标记入门

题目链接:点击这里

 

解题思路:

以前做区间修改都是一种标记,可以直接标记.而现在这题既有乘法更新又有加法更新,如果再按以前的思想循序更新就肯定会出错.

所以在多重标记的情况下我们可以给它们制定一个优先级的规则,假设每次的更新都是乘法优先于加法.那么更新操作要怎么改变呢?

设add[]为加法懒惰标记,mul[]为乘法懒惰标记.

对区间rt进行加x操作:直接add[rt] += x

对区间rt进行乘x操作:原来区间值可看为 y*a + b,(y*a + b)*x = y*(a*b) + b*x(a为当前mul[rt]的值,b为当前add[rt]的值),

所以mul[rt] = mul[rt]*x,add[rt] = add[rt]*x

 

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define fi first
#define se second
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int mx = 1e5 + 10;
int n,m,mod,d,L,R,k;
ll sum[mx*3],mul[mx*3],add[mx*3];
void build(int l,int r,int rt)
{
	mul[rt] = 1;
	if(l==r){
		scanf("%lld",sum+rt);
		return;
	}
	int mid = (l+r)>>1;
	build(lson);
	build(rson);
	sum[rt] = (sum[rt<<1]+sum[rt<<1|1])%mod;
}
void push_down(int l,int r,int rt)
{
	mul[rt<<1] = (mul[rt<<1]*mul[rt])%mod;
	mul[rt<<1|1] = (mul[rt<<1|1]*mul[rt])%mod;
	
	add[rt<<1] = (add[rt<<1]*mul[rt]+add[rt])%mod;
	add[rt<<1|1] = (add[rt<<1|1]*mul[rt]+add[rt])%mod;
	
	int mid = (l+r)>>1;
	sum[rt<<1] = (sum[rt<<1]*mul[rt] + add[rt]*(mid-l+1))%mod;
	sum[rt<<1|1] = (sum[rt<<1|1]*mul[rt] + add[rt]*(r-mid))%mod;
	
	mul[rt] = 1,add[rt] = 0;
}
void update(int l,int r,int rt)
{
	if(L<=l&&r<=R){
		if(d==1){
			mul[rt] = (mul[rt]*k)%mod;
			add[rt] = (add[rt]*k)%mod;
			sum[rt] = (sum[rt]*k)%mod;
		}else{
			add[rt] = (add[rt]+k)%mod;
			sum[rt] = (sum[rt]+1ll*(r-l+1)*k)%mod;
		}
		return ;
	}
	push_down(l,r,rt);
	int mid = (l+r)>>1;
	if(L<=mid) update(lson);
	if(R>mid) update(rson);
	sum[rt] = (sum[rt<<1]+sum[rt<<1|1])%mod;
}
ll query(int l,int r,int rt)
{
	if(L<=l&&r<=R) return sum[rt];
	push_down(l,r,rt);
	int mid = (l+r)>>1;
	ll ans = 0;
	if(L<=mid) ans = (ans+query(lson))%mod;
	if(R>mid) ans = (ans+query(rson))%mod;
	return ans;
}
int main()
{    
    scanf("%d%d%d",&n,&m,&mod);
    build(1,n,1);
    while(m--){
    	scanf("%d",&d);
    	if(d!=3){
    		scanf("%d%d%d",&L,&R,&k);
    		update(1,n,1);
		}else{
			scanf("%d%d",&L,&R);
			printf("%lld\n",query(1,n,1)); 
		}
	}
    return 0; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值