- 博客(18)
- 资源 (1)
- 问答 (4)
- 收藏
- 关注
原创 文本生成模型原理与训练策略解析:从BERT增量微调到生成式模型全量调优
BERT等理解型模型的增量微调策略与生成式模型的全量调优需求,反映了NLP任务从“理解”到“创造”的范式转变。在实际应用中,根据任务需求选择合适的训练策略,结合高质量数据和完善的训练技巧,是提升文本生成效果的关键。通过持续优化模型架构、训练方法和评估体系,生成式AI将在更多领域实现高质量、可控、多样化的文本创作,为人机交互和内容创作带来新的可能性。(如GPT系列)通常需要。文本生成技术的发展正在从。在自然语言处理领域,
2025-12-17 10:18:19
491
原创 GPT-2语言模型训练代码优化与深度解析
理解了语言模型训练的全流程:从数据准备到模型部署掌握了CPU训练大模型的优化技巧:内存管理是关键学会了正确的学习率调度:预热+线性衰减是标准做法了解了模型保存和恢复策略:检查点机制很重要。
2025-12-17 09:04:24
631
原创 二分类情感分析项目:从零到一的完整指南
1. 数据要分三份:训练、验证、测试- 测试集是"期末考题",只能最后用一次!2. 模型训练要监控:- 训练损失下降是好事- 验证损失上升是坏事(过拟合)3. 保存最佳模型:- 不是最后的最好,而是验证集表现最好的4. 部署时要切换模式:- model.eval():考试模式- torch.no_grad():不记笔记,省内存。
2025-12-16 09:04:20
366
原创 深度学习模型部署实战:从训练到实际应用的完整接口
部署检查清单 = {"✅ 模型一致性": {"检查点": "使用与训练时完全相同的模型结构","验证方法": "在验证集上测试,确保准确率一致"},"✅ 预处理一致性": {"检查点": "使用与训练时相同的分词器和参数","验证方法": "相同文本预处理后应与训练时相同"},"✅ 内存管理": {"检查点": "使用model.eval()和torch.no_grad()","验证方法": "监控内存使用,确保不泄露"},"✅ 错误处理": {
2025-12-16 09:03:51
261
原创 深度解析:BERT模型训练与验证全流程
训练验证分离:训练集用于学习,验证集用于评估,防止过拟合模式切换和必须正确使用梯度管理:训练时需要梯度,验证时禁用梯度模型保存:保存最佳模型和最后模型,各有用途监控指标:同时关注损失和准确率,观察训练验证差距训练验证一体化代码就像给模型安排了"学习-测验-改进"的完整学习循环,通过验证集这个"监督员",确保模型真正学会了知识,而不是死记硬背答案。掌握这套训练验证流程,你就能科学地训练出泛化能力强、实用价值高的深度学习模型!
2025-12-15 09:57:49
757
原创 BERT模型测试集验证全流程解析
模型测试是机器学习工作流中至关重要的一环,它评估训练好的模型在未见数据上的表现,反映了模型的泛化能力。# 模型测试验证 test.py# 定义设备信息# 关键点1:统一设备配置 - 确保训练和测试使用相同的设备# 加载字典和分词器# 关键点2:保持分词器一致性 - 必须使用与训练时相同的分词器。
2025-12-15 09:57:25
504
原创 BERT模型训练全流程解析:从数据加载到模型保存
环境配置:设备选择、超参数设置数据预处理:BERT分词、批量编码、张量转换数据加载:DataLoader配置、批处理策略训练循环:前向传播、损失计算、反向传播、参数更新监控保存:训练监控、模型保存通过这个流程,可以训练一个中文情感分类的BERT模型。实际应用中,还需要考虑验证集评估、超参数调优、模型部署等更多环节。核心要点总结理解BERT输入格式的特殊要求合理配置DataLoader参数掌握PyTorch训练循环的标准写法实施有效的训练监控和模型保存策略。
2025-12-14 11:45:46
642
原创 BERT微调实践:冻结预训练层+分类头增量训练详解
本文通过一个完整的情感分析二分类任务,详细讲解如何使用BERT进行模型微调(Fine-tuning),重点分析和的核心思想与实现细节。
2025-12-13 19:07:30
535
原创 Bert文本分类初识
文本分类作为自然语言处理的基础任务,能够让机器像人类一样,理解并归类文字信息,为情感分析、主题识别、垃圾邮件过滤、意图判断等众多场景提供智能支持。
2025-12-11 08:34:05
556
原创 离线调用本地GPT2
Transformers库的pipeline是一个高级API,它将模型推理的完整流程(加载模型 → 预处理 → 推理 → 后处理)封装成一行代码,极大简化了深度学习模型的使用。核心功能:支持多种NLP任务:文本生成、文本分类、问答、翻译、摘要、完形填空等自动处理数据预处理和后处理支持自定义模型和参数配置关键特点:易用性:无需手动编写预处理/后处理代码灵活性:可指定模型、分词器、设备、精度等参数标准化输出:不同任务返回统一格式的结果
2025-12-10 09:53:18
246
原创 环境搭建——安装 Hugging Face 库
Anaconda:安装过程中若选择“Just Me”,下一步就可以选择加入环境变量,否则需要安装完后手动配置环境变量。依赖库:transformers 、datasets、tokenizers。:专门优化深度学习的计算(像给GPU请了个深度学习家教,效率倍增)PyCharm:创建工程时Python解释器选择Anaconda的。:让GPU能进行通用计算(像教GPU做数学题)pytorch:官网。
2025-12-09 20:16:17
469
原创 访问hugging face
提供了很多方式下载,如github、百度网盘、gitee等。当然也可直接访问hugging face的国内镜像站。注意:该方式只可访问还是无法注册登录!在Steam++主界面找到。1.下载安装Steam++
2025-12-09 19:36:11
314
原创 Struts2框架报错There is no Action mapped for namespace [/] and action name
需在struts.xml中加入一句话:<constant name="struts.enable.DynamicMethodInvocation" value="true"></constant>
2019-12-08 16:24:39
104
转载 解决mysql5.5乱码问题
https://blog.csdn.net/liang_operations/article/details/82763529
2019-06-03 09:28:27
244
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅