为什么软件开发方法论让你觉得糟糕?

在这里插入图片描述
围绕软件开发实践和方法论,总有很多教条式的口水仗。阶段式(phase-gate)方法能够有效管理软件开发过程的风险,还是说只是风险管理中的花哨噱头?TDD真的能够促生出高品质软件?结对编程是代码评审的有效替代抑或只是增加了商议沟通代价?我想说,虽然缺乏证据判断这些论调的谬处,但有两条常用的法则能够帮助我们选择好的实践,同时,提升我们所提供软件的价值:划小开发周期以及提升反馈效率。

Michael Feathers给出了以下观点:
我认为,到了最后,我们还是得倚重开发者的能力,这才是个更重要的考量因素,而非选择哪门语言或纠结于方法论间的细微差别[1]。坦诚地说,我们都清楚这点,但我们看起来好像过度纠结于开发能力是关键因素这事儿上。或许这是个经济学里一个被广泛接受的观点的引申,但如果人是可以轻易轮换的(随便找个人都能顶上),那才是堪称理想的。

问题是,我们怎样才能找到有(合适)技能的开发者?IT界从未很好地定义个体生产率,从这点来看,那么,要找到合适技能的开发者就是个很难解决的问题。代码行数(Lines of code) - 在现在仍然是一个主流的度量方法 - 深陷“一行代码一个责任”泥潭,这并不是一个好的方法。而度量工作小时数则是鼓励(个人)英雄式举动 - 经验表明,“英雄们”通常就是导致项目延期的人,依赖“英雄”往往是一开始就采取的不该采取的冒险行动,长时间工作导致人变得鲁钝,并导致低质量软件出现。目前还没有被普遍接受的针对IT专业人才的专业要求系列标准和雇用范式,招聘好的人才,是一门(招聘)艺术,而非(招聘)工程。

心理学家至少对这个问题进行了研究:为什么IT业的技能很难被掌握和度量?Daniel Kahneman说(Thinking Fast and Slow),掌握技能有两个基本条件:一个环境足够规律以便可预测;有机会通过长时间实践来学习掌握这些规律。

但是典型的软件项目往往是没有规律及可预测环境的。项目成功的唯一正确度量就是:最终的结果通过整个生命周期里的实施达到了预期目标吗? 很难知道什么关键活动导致了项目成功和失败,很少有人能够通过旧有或现有的项目获得答案。几乎不可能判定哪些决策导致了成功或失败(在人工智能领域,这叫作信度分配问题)。

这些因素造成了IT专业人员很难掌握引导产品和服务走向成功所需的能力。然而,开发者掌握能帮助他们更高效地达到目标的技巧,将使他们更有动力 - 通常称之为“开发完成”,尽可能快的、不考虑是否功能被集成以及生产就绪。类似的场景也常出现在其他功能性实施领域。

实际的软件项目是复杂的,没有规律可循,这会导致另一个问题 - 为了证明某种技术、实践和方法论是实际有效而收集相关数据是极度困难的,几乎不可能在脱离收集环境的情况下归纳出这些数据。

在Laurent Bossavit的好书The Leprechauns of Software Engineering中,他抨击了软件开发的一些惯式,比如“成本变化”(或“缺陷成本”)“曲线”,这些惯式是许多其它的软件开发方法论知识基础,称开发人员生产率的变化是一个数量级(参照确定性金字塔原理)。Laurent Bossavit说明了相关依据 - 很多人依赖从计算机科学专业学生进行的非正式试验或是从无法被有效控制的项目中收集小量数据。这些研究组织的给出的论调基础往往是不健全的,数据缺乏分析,而且,最过分的是调查结果普遍远远超出了他们的适用领域。

因此,不太可能轻易下论断敏捷开发实践就比瀑布模式之流合适,反之亦然。“方法大师”的见解其实也没太大指导意义,就像Kahneman说的,“人们在想法方面的信心,并非是有效行事可倚重的因素…当评估专家的想法,即使在有规律可循的情况下,你也一定要想清楚是否有合适时机可以引入其想法的可能性”。就像Ben Butler-Cole指出的(why software development methodologies rock),引入一种新方法往往会带来一些影响。

你可能会认为当我们决定怎样运作一个团队时,我们就陷入了被动。但细想一下为什么软件开发无章可循?为什么在这个环境里很难进行一些试验以及获取技能?什么实践和决定会导致成功或失败?其中的根原因就是:环境是不规律的,做出变更与理解变更带来的结果之间的反馈过程太长了。这里的“变更”一词是指广义上的需求变更、方法变更、开发实践变更、商业计划变更、代码或配置变更等等。

还是有一些办法帮助缩短周期的,比如当我们应用精益软件开发思想 - 一个很重要的方法。缩短开发周期在大型产品开发中是很重要的:在Bret Victor的精彩视频Inventing on Principle中提到,“如此多的创新被发现,只要你真正理解了你在做什么,你就能发现任何事物”。

但对我而言就是这样的:我们几乎不可能实践持续改进、学会怎样使团队或个人变得更好、掌握成功创建大型产品与服务所需的技能。除非我们聚焦于尽可能使反馈间隔时间缩短,以便实际洞察其间关联,以及辨别原因和影响。

事实上,从想法到反馈的周期尽可能短的好处是如此明显和重要,应该把其作为商业模式中要遵循的一个重要原则。如果你纠结于要把你的产品创建成一个用户安装式的软件还是SaaS模式(software-as-a-service,软件运营服务模式,软件即服务),这时的想法会自然而然地推动你强烈考虑SaaS模式(有感而发)。如果你要重建你的系统(包含硬件),应该考虑怎样尽快实现原型(how you can get prototypes out as quickly as possible),以及模块化硬件和软件,以便你可以快速和独立地整合。3D printing(三维打印成型技术)技术看起来在这方面有着巨大的用武之地,因为它可以满足软件开发应用实践朝硬件系统(原型呈现)的演进。如果你想如愿以偿地缩短周期,或多或少按多功能型团队(cross-functional teams)方式运作是需要的。

软件方法论,即使雇用一群牛人并让他们自我组织,也是糟糕的,因为他们时常搞得“cargo-cult”(货物崇拜,敏捷开发里的知名小故事,形而上):我们在做stand-ups(每日站立会议),我们有优先顺序的backlog(优先待办事务),我们甚至看在老天的份上实践了continuous integration(持续集成)。我们的到头来的结果为什么还这么差呢?因为你忘了最重要的事情:建立一个学习能力和适应能力都很好的组织。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 、资源5来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 、资源5来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。、 5资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值