实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−2^31, 2^31 − 1]
这里因为n的范围还是很大的,如果直接循环相乘的话,是超时了(因为我第一种尝试的就是这种方法,,)
然后进行优化,在刚才的基础上引入一个数组,存储好每个次方下的值,每次取该数组最后一位来计算,如果n小于了最后一位之后,直接以n作为键去取数组中的值就结束,这种方法虽然比上一种已经快了不少,但是对于大数来说还是太慢了,因为数组中的键每次都是加1,这样加得太慢了
后面在题解中看到的二分递归的思想就快多了,相当于每次减少一半,不管数是多大,这样效率显著提高了
先贴出我优化的方法:
class Solution {
/**
* @param Float $x
* @param Integer $n
* @return Float
*/
function myPow($x, $n) {
if ($x == 0) {
return 0.00000;
}
$res = 1;
$arr = [];
$sum = 1;
if ($n < 0) {
$arr[1] = 1/$x;
while ($n < 0) {
$sum++;
$arr[$sum] = (1/$x)*$arr[$sum-1];
end($arr);
$new = key($arr);
if (abs($n) >= $new) {
$res *= $arr[$new];
$n += $new;
} else {
$res *= $arr[abs($n)];
break;
}
}
} elseif ($n > 0) {
$arr[1] = $x;
while ($n > 0) {
$sum++;
$arr[$sum] = $x*$arr[$sum-1];
end($arr);
$new = key($arr);
if ($n >= $new) {
$res *= $arr[$new];
$n -= $new;
} else {
$res *= $arr[$n];
break;
}
}
} else {
return 1.00000;
}
return sprintf('%.5f', $res);
}
}