MR素性探测

MR算法(Miller-Rabin素性测试)是一种用于判断数是否为质数的非确定性算法,基于费马小定理。在特定范围内,通过选取参数,它可以成为确定性算法。算法核心是若p为素数,对于任意x<p,x^((p-1)/2) mod p 的结果要么为1要么为p-1。通过不断提取指数n-1的因子2并进行计算,可以判断数的素性。在POj 3641题目中,需要判断基于特定底数a的伪素数p。
摘要由CSDN通过智能技术生成

MR素性探测

简介

MR算法全称是Miller-Rabin测试,是一个非确定的算法,用于判断一个数是否是质数.虽然是一个非确定的算法,但是只要巧妙地选取参数,在一定范围内就是一个确定性的算法.

前置条件:费马小定理 1 ≡ a^(p-1) (mod p)

Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了传说中的Miller-Rabin素性测试算法。 新的测试基于下面的定理(二次探测定理):如果p是素数,x是小于p的正整数,且x^2 mod p = 1,那么要么x=1,要么x=p-1。这是显然的,因为x^2 mod p = 1相当于p能整除x^2-1,也即p能整除(x+1)(x-1)。由于p是素数,那么只可能是x-1能被p整除(此时x=1)或x+1能被p整除(此时 x=p-1)。

这就 是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成d*2^r(其中d是一个奇数)。那么我们需要计算的东西就 变成了a的d*2^r次方除以n的余数。于是,a^(d * 2^(r-1))要么等于1,要么等于n-1。如果a^(d * 2^(r-1))等于1,定理继续适用于a^(d * 2^(r-2)),这样不断开方开下去,直到对于某个i满足a^(d * 2^i) mod n = n-1或者最后指数中的2用完了得到的a^d mod n=1或n-1。这样,Fermat小定理加强为如下形式:
尽可能提取因子2, 把n-1表示成d*2^r,如果n是一个素数,那么或者a^d mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i<r ) (注意i可以等于0,这就把a^d mod n=n-1的情况统一到后面去了)

关于正确性

如果你每次都用前7个素数(2, 3, 5, 7, 11, 13和17)进行测试,所有不超过341 550 071 728 320(即3.4e14)的数都是正确的。如果选用2, 3, 7, 61和24251作为底数,那么10^16内唯一的强伪素数为46 856 248 255 981(即4.6e13)。

注意是当取模为1时才能继续降幂取模,取模为N-1时算法终止(但是之后的算法实际上不是这么死板地实现的).

模板

ll Quick_Multiply(ll a, ll b, ll c)  //快速积(和快速幂差不多)
{
   
    long long ans = 0, res = a;
    while (b) {
   
        if (b & 1)
            ans = (ans + res) % c;
        res = (res + res) % c;
        b >>= 1;
    }
    return ans;
}

ll Quick_Power(ll a, ll b, ll c)     //快速幂,这里就不赘述了
{
   
    ll ans = 1ll, res = a;
    while (b) {
   
        if (b & 1)
            ans = Quick_Multiply(ans, res, c);
        res = Quick_Multiply(res, res, c);
        b >>= 1;
    }
    return ans;
}

bool Miller_Rabin(ll n, int a, ll d)     //判断素数
{
   
    if (n 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值