少量毛衣搭配技巧

少量毛衣搭配技巧

季来了,秋天当下流行穿什么,一些简单且舒适的衣服同样我们在人群中崭露头角,想让人眼前一亮吗?在这个秋天那么值得你看:

此次涉及服装搭配上大部分:服装款式搭配技巧,个性服装搭配技巧,衣服的款式与鞋子的搭配技巧,脸型与身材搭配技

个性图案+短款毛衣

复古棕色,修身裁剪,精致麻花编,穿在身上巧可爱,透着温柔淑女气质,搭配黑色丝袜黑色小短裙,短靴,流行的秋季搭配,挡住降温是不错的选择;

看起来厚实,穿在身上觉的温暖,短款设计,红色系,100搭有型,配高跟短靴,穿上黑丝袜和格子包臀裙,轻松营造优雅气质;

毛衣背心

是秋季流行品,浅灰色为毛衣的一种款式,搭配白衬衫,下穿牛仔短裙,营造文艺复古的格调,非常有韵味呢;

豹纹的直筒中长款外套搭配牛仔热裤

黑色衬衫加上高腰的百褶皮裙,加造型层次,遮盖壮硕的臀部和胯部,上尖头高跟鞋看起来高挑纤瘦许多

宽松卫衣+阔腿裤

修身带帽的款式,比较偏运动风,而且刺绣真的超好看偏宽松一点的设计能遮肉显瘦,不会显得太大件!与同色系的阔腿裤搭配起来,那么整体显瘦很正常

毛衣纹路菱形麻花

纹路型自带文艺的感觉,冬天配一条松垮的大围脖,浓浓的复古 毛衣穿搭示范 ,浓浓的复古范;

在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值