本篇题解只是记录我的做题过程代码,不提供最优解
(另外这里所有的时间复杂度都只分析单个样例,不算
t
t
t的时间复杂度)
A
点击此处查看对应的题目.
本题设计算法:模拟
时间复杂度 O ( n ) O(n) O(n)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;
typedef long long ll;
const int N = 2e5 + 10,INF = 1e9;
int a[N];
map<int,int> st;
void solve()
{
int n;
cin >> n;
for (int i = 1;i <= n;i ++ ) cin >> a[i];
int x = 1,first = -1,second = -1;
for (int i = 1;i <= n;i ++ ) {
if (a[i] == 0 && first == -1) {
first = i;
for (int j = i;j <= n;j ++ ) {
if (a[j] == 1) {
i = j - 1;
break;
}else x ++;
}
} else if (a[i] == 0 && first != -1) {
second = i;
break;
}
//cout << i << ' ' << x <<'\n';
}
int index = -1;
for (int i = n;i >= 1;i -- ) {
if (a[i] == 0 ) {
index = i;
break;
}
}
if (first == -1) cout << 0 <<'\n';
else if (second == -1) cout << x << '\n';
else cout << index - first + 2 << '\n';
}
int main()
{
int t;
cin >> t;
while (t -- ) {
solve();
}
return 0;
}
B
点击此处查看对应的题目.
本题设计算法:贪心
贪心策略:只要找到传球数最大的球员与剩余的球员对比即可
时间复杂度 O ( n ) O(n) O(n)
#include <iostream>
#include <cstring>
#include <algorithm>
#include <vector>
#include <map>
using namespace std;
typedef long long ll;
const ll N = 2e5 + 10,INF = 1e9 + 7;
ll a[N];
void solve()
{
ll n,maxn = -INF;
cin >> n;
ll sum = 0;
for (int i = 1;i <= n;i ++ ) {
cin >> a[i];
maxn = max(maxn,a[i]);
sum += a[i];
}
ll yu = sum - maxn;
if (maxn == 0) cout << 0 << '\n';
else if (maxn <= yu) cout << 1 <<'\n';
else {
yu ++;
ll res = maxn - yu;
cout << res + 1 << '\n';
}
}
int main()
{
int t;
cin >> t;
while (t -- ) {
solve();
}
return 0;
}
C
点击此处查看对应的题目.
**本题设计算法:关键字排序 + 快速组合 **
先分别对每种颜色的所有可能坐标进行统计
然后枚举所有颜色,求曼哈顿距离的和【注意对x与y坐标排序(这样可以忽略曼哈顿距离的绝对值,从而比较好求),这里分开x,y坐标求比较好】
另外注意,同颜色求和是要找到 C l e n 2 C_{len}^2 Clen2组合相减的规律,用O(n)的时间求出,而不是暴力求,会超时。
举个栗子:
1 2 3 4 的
C
4
2
C_4^2
C42的组合相减
时间复杂度 O ( n 2 ∗ l o g n ) O(n^2 * logn) O(n2∗logn)
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
const int N = 2e5 + 10;
typedef long long ll;
typedef pair<ll,ll> PII;
vector<PII> ver[N];
ll res,d;
bool cmp(PII x,PII y)
{
return x.second < y.second;
}
int main()
{
ll n,m;
cin >> n >> m;
for (ll i = 1;i <= n;i ++ ) {
for (ll j = 1;j <= m;j ++ ) {
ll val;
cin >> val;
ver[val].push_back({i,j});
}
}
for (ll i = 1;i <= N;i ++ ) {
ll len = (ll)ver[i].size();
if (len <= 1) continue;
sort (ver[i].begin(),ver[i].end());
for (ll j = 1;j < len;j ++ ) res += (len - j) * j * (ver[i][j].first - ver[i][j - 1].first);//优化重点
sort (ver[i].begin(),ver[i].end(),cmp);
for (ll j = 1;j < len;j ++ ) res += (len - j) * j * (ver[i][j].second - ver[i][j - 1].second);//优化重点
}
cout << res << '\n';
return 0;
}