矩阵乘法

#include<iostream>
using namespace std;

const int N=7;
//p为矩阵链,p[0],p[1]代表第一个矩阵的行数和列数,p[1],p[2]代表第二个矩阵的行数和列数......length为p的长度
//所以如果有六个矩阵,length=7,m为存储最优结果的二维矩阵,s为存储选择最优结果路线的
//二维矩阵
void MatrixChainOrder(int *p,int m[N][N],int s[N][N],int length)
{
    int n=length-1;
    int l,i,j,k,q=0;
    //m[i][i]只有一个矩阵,所以相乘次数为0,即m[i][i]=0;
    for(i=1;i<length;i++)
    {
        m[i][i]=0;
    }
    //l表示矩阵链的长度
    // l=2时,计算 m[i,i+1],i=1,2,...,n-1 (长度l=2的链的最小代价)
    for(l=2;l<=n;l++)
    {
        for(i=1;i<=n-l+1;i++)
        {
            j=i+l-1; //以i为起始位置,j为长度为l的链的末位,
            m[i][j]=0x7fffffff;
            //k从i到j-1,以k为位置划分
            for(k=i;k<=j-1;k++)
            {
                q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(q<m[i][j])
                {
                    m[i][j]=q;
                    s[i][j]=k;
                }
            }
        }
    }
    cout << m[1][N-1] << endl;
}
void PrintAnswer(int s[N][N],int i,int j)
{
    if(i==j)
    {
        cout<<"A"<<i;
    }
    else
    {
        cout<<"(";
        PrintAnswer(s,i,s[i][j]);
        PrintAnswer(s,s[i][j]+1,j);
        cout<<")";
    }
}
int main()
{
    int p[N]={30,35,15,5,10,20,25};
    int m[N][N],s[N][N];
    MatrixChainOrder(p,m,s,N);
    PrintAnswer(s,1,N-1);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>