leetcode(12): 动态规划2

本文探讨了LeetCode中一个动态规划问题的解决过程,从最初的递归解法导致超时,到使用基本动态规划策略仍然无法通过性能测试,最后详细介绍了如何优化动态规划解法以降低时间和内存消耗,尽管目前仍未达到理想效果。
摘要由CSDN通过智能技术生成

写在前面:

针对大数问题的取模可以解决溢出问题  --- res = number % 10000000007

题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?	
注意:给定 n 是一个正整数。

走一波递归超出时限

//确定函数功能:根据剩余的阶梯数x返回其可能走法数
//确定尾头: 尾:当剩余1阶台阶时只有1种走法。当剩余2阶台阶是只有两种解法  头:有走一步/走两步两种情况,分别获得对应走法数
class Solution {
public:
    int climbStairs(int n) {
        if(n == 1) return 1;
	    if(n == 2) return 2;
	    return climbStairs(n - 1) + climbStairs(n - 2);
    }
};

走一波dp — 耗时:100%! 内存: 100%!

//定函数:自变量为剩余阶梯数n f(n)为n个台阶的走法 f(n) = f(n - 1) + 1 / f(n -2) + 2
//表格优化: 取n前面两个元素运算即得结果
class Solution {
public:
    int climbStairs(int n) {
		if (n > 1) {
			vector<int> f(n);
			f[0] = 1;
			f[1] = 2;
			for (int i = 2; i < n; i++) {
				f[i] = f[i - 1] + f[i - 2];
			}
			return f[n - 1];
		}
		return 1;
	}
};

走一波dp优化 — 耗时:100%! 内存: 100%!

//因为结果只跟前两个数字有关, 故声明两个变量保存它们就okk啦
class Solution {
public:
	int climbStairs(int n) {
		if (n == 1) return 1;
		if (n == 2) return 2;
		if (n > 2) {
			int res1 = 1;
			int res2 = 2;
			int res = 0;
			for (int i = 2; i < n; i++) {
				res = res1 + res2;
				res1 = res2;
				res2 = res;
			}
			return res;
		}
        return 0;
	}
};

hhhahaha😊
在这里插入图片描述


2020.03.18类似题目更新:/

题目描述:

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少
种上楼梯的方式。结果可能很大,你需要对结果模1000000007。

dp

//确定函数:自变量为要走阶梯数x,f(x)代表走x阶梯的走法;f(x) = f(x - 1) + f(x - 2) + f(x - 3)
//表格优化:直接用三个变量储存有关联的三个数字,再返回目标变量就了
class Solution {
public:
	 long waysToStep(int n) {
		if (n <= 2) return n;
		else if (n == 3) return 4;
		else if (n > 3){
			 long a1 = 1;
			 long a2 = 2;
			 long a3 = 4;
			 long res = 0;
			for (int i = 3; i < n; i++) {
				res = (a1 + a2 + a3) %1000000007;
				a1 = a2;
				a2 = a3;
				a3 = res;
			}
			return res;
		}
		return 0;
	}
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值