写在前面:
针对大数问题的取模可以解决溢出问题 --- res = number % 10000000007
题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
走一波递归 — 超出时限
//确定函数功能:根据剩余的阶梯数x返回其可能走法数
//确定尾头: 尾:当剩余1阶台阶时只有1种走法。当剩余2阶台阶是只有两种解法 头:有走一步/走两步两种情况,分别获得对应走法数
class Solution {
public:
int climbStairs(int n) {
if(n == 1) return 1;
if(n == 2) return 2;
return climbStairs(n - 1) + climbStairs(n - 2);
}
};
走一波dp — 耗时:100%! 内存: 100%!
//定函数:自变量为剩余阶梯数n f(n)为n个台阶的走法 f(n) = f(n - 1) + 1 / f(n -2) + 2
//表格优化: 取n前面两个元素运算即得结果
class Solution {
public:
int climbStairs(int n) {
if (n > 1) {
vector<int> f(n);
f[0] = 1;
f[1] = 2;
for (int i = 2; i < n; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f[n - 1];
}
return 1;
}
};
走一波dp优化 — 耗时:100%! 内存: 100%!
//因为结果只跟前两个数字有关, 故声明两个变量保存它们就okk啦
class Solution {
public:
int climbStairs(int n) {
if (n == 1) return 1;
if (n == 2) return 2;
if (n > 2) {
int res1 = 1;
int res2 = 2;
int res = 0;
for (int i = 2; i < n; i++) {
res = res1 + res2;
res1 = res2;
res2 = res;
}
return res;
}
return 0;
}
};
hhhahaha😊
2020.03.18类似题目更新:/
题目描述:
三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少
种上楼梯的方式。结果可能很大,你需要对结果模1000000007。
dp
//确定函数:自变量为要走阶梯数x,f(x)代表走x阶梯的走法;f(x) = f(x - 1) + f(x - 2) + f(x - 3)
//表格优化:直接用三个变量储存有关联的三个数字,再返回目标变量就了
class Solution {
public:
long waysToStep(int n) {
if (n <= 2) return n;
else if (n == 3) return 4;
else if (n > 3){
long a1 = 1;
long a2 = 2;
long a3 = 4;
long res = 0;
for (int i = 3; i < n; i++) {
res = (a1 + a2 + a3) %1000000007;
a1 = a2;
a2 = a3;
a3 = res;
}
return res;
}
return 0;
}
};