北京互联网创业团队诚邀英才加盟

本人今年研3,一个想法在脑子里有3天了,我向周围的人讲述了我的想法,基本上认同我的想法,认为有的做。我联系了一个经管的同学,大家也讨论了一下可行性。觉得可以做。项目具体是一个关于高校的项目。我们估计整个项目的成败3个月就可以见分晓了。而且前期的投入不大。自认为非常不错。

如果你能承受得起三个月没有工资,且具备以下能力之一,并且认同我们,那就联系我吧。

现向社会和在校生招聘以下创业团队成员

1.前台美工

熟练操刀Photoshop,如果能进行Div+CSS处理尤佳

2.前台js工程师

能熟练运用js制作常用特效,同时能照顾浏览器兼容性,如能根据实际情况对JQuery等框架进行裁剪尤佳

3.前台coding

能根据设计的出图结合后台程序的特性进行合理的div+css设计,

4.网站后台开发人员

具备asp.net的相关开发经验,对缓存、安全性理解深刻。对sqlite有实际应用者尤佳

5.服务器运维人员

能运用C#、python等制作一些监控小工具,对WCF、MSMQ有实践应用者尤佳

6市场推广及策划人员

具备良好的互联网市场分析和销售策划能力,具有战略性的规划和实战性的计划目光和策略,对市场有准确的判断和驾驭能力

 

 

如果能身兼多职者当然是更欢迎了。

 开发人员合作的方式可以商议

联系方式:

Frederick.Mao@gmail.com(来涵,请附履历,附带作品截图尤佳)

 补充:这则信息主要目的是希望有兴趣加入,有想法的朋友能和我详谈,最后吸纳的成员必须面谈 ,大家是一个相互了解认知的过程,并不是说一列这个要求你就要怎么怎么样。

3个月可见分晓,是说我们对这个项目的估计,成功失败3个月很明朗,到底能不能活,我认为这是一个优势所以特地罗列出来,如果面谈,我会告诉你为什么是3个月不是1个月。这个就像封闭开发,是有明确的期限,并不是遥遥无期,让人有盼头。

有人对这个项目的具体操作不太了解,我们的想法是这样,项目活了,大家注册公司一起干,败了那就散了。三个月的周期并不是很长,对大家各自的生活可能并没有太大的影响,特别是现在还没有稳定工作的人(当然前提是你吃穿不愁啦)。

北京地区可以面谈

posted on 2008-09-11 19:07  lexus 阅读( ...) 评论( ...) 编辑 收藏

转载于:https://www.cnblogs.com/lexus/archive/2008/09/11/1289415.html

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页