- 博客(5202)
- 资源 (6)
- 收藏
- 关注

原创 计算机视觉的学习资料(更新中)
计算机视觉(Computer Vision):https://en.wikipedia.org/wiki/Computer_vision计算视觉相关条目:Outline of computer vision Category:Computer vision经典书籍《Multiple View Geometry in Computer Vision Second Edition》计算机视觉圣经全...
2018-01-23 21:09:03
3697
1
转载 ICML 2025 | 陶大程团队提出RAP:基于RAG的高分辨率图像感知框架
为了维持检索图像块之间的相对位置关系,研究人员设计了 Spatial-Awareness Layout 算法,通过确定关键的图像块的位置,剔除无效的行和列,在降低图像分辨率的同时,有效保持图像块之间的相对位置关系。对比的方法包括基于裁剪的方法(LLaVA-v1.6, InternVL-1.5 等)以及使用处理高分辨率图像的视觉编码器的方法(LLaVA-HR-X),实验结果如下表所示,RAP 在单实例感知和多实例感知任务上都能带来明显的性能提升。, 一种无需训练的基于 RAG 技术的高分辨率图像感知插件。
2025-05-18 00:00:14
23
转载 ICCV 2025 万篇投稿破纪录,作者被逼全员审稿!网友痛批不如GPT
然而,我并没有找到这些术语的明确定义,这导致「提高理解力」这一目标的定义实际上取决于用于衡量它的方法,即第4.2节中使用的基准测试。因此,我只能认为该论文在特定的一组基准测试所定义的任务上表现良好,而这种良好表现也是通过同样的基准测试来衡量的。我希望看到这些术语的明确定义、用于衡量它们的指标,以及优化这些指标的原理,特别是该论文提出的方法是如何实现这些优化的。她表示,我理解审稿人紧缺的现状,但强制规定「作者必须参与审稿」,且任何一人超期未完成,就会导致其所有论文被直接拒稿,这种规定实在荒谬了。
2025-05-15 13:06:03
61
转载 百万奖金!目标检测、大模型等赛事全面启动!2025长三角(芜湖)算力算法创新应用大赛来了
通过数据产品开发,分析和利用公共数据,开发具有创新性和实用性的数据产品和解决方案,探索数据产品在不同场景中的应用价值。赛题聚焦“基于视觉的无人机检测与预警”关键技术环节,参赛者需基于组委会提供的图像与视频数据,完成以下主要任务:无人机目标检测、单/多目标跟踪、异常飞行行为识别与预警、模型优化与部署等。随着算力基础设施的建设,数据在多个行业的应用需求日益增长,基于AI相关技术,不限于医疗、金融、交通等不同领域,挖掘潜在数据价值、关联性等,并呈现可落地、具备商用价值的软硬件产品及方案。
2025-05-15 13:06:03
48
转载 “你算什么东西”,大学教授辱骂学生?本人回应!
若证实为学生伪造短信,其行为属于捏造事实诽谤他人,侵犯了涉事老师的名誉权,将承担民事责任。10日下午,该教授回应表示,自己没有发过“骂学生”的短信。称自己作为一名老师,不可能去骂学生,而且自己与该名学生不认识,也没见过,没有动机去骂。据网友在社交平台的发文,其在今年2月向安徽工业大学某教授发邮件申请报他的博士研究生,此后多次向教授发短信表达了自己的意愿,结果收到辱骂短信。而对师生双方来讲,大家做人都应该更坦诚一些,不论是导师还是学生,在有若干选择的时候,应该说清楚,而不是隐瞒欺骗,只说好话和许诺。
2025-05-14 13:05:34
39
转载 ICML 2025 | FG-CLIP:细粒度视觉和文本对齐,解决CLIP的“近视“问题!
该模型处理不同图像描述长度的能力突出了其在多模态匹配中的通用性和鲁棒性。在图文检索任务中,长文本描述可以涵盖从全局场景到局部细节的全面信息,使得模型能够在多个层次上与图像特征进行比对和匹配,从而提升检索的准确性和相关性。显然这个描述是错误的,这就是CLIP的“视觉近视”问题:会因为对比损失倾向于拉近全局图像与文本的嵌入,而非局部区域的对齐,削弱了细粒度特征学习。这套丰富而系统的数据集显著提升了模型识别精细特征的能力,为FG-CLIP的训练奠定了扎实基础,使其在视觉与文本特征的细粒度理解方面表现卓越。
2025-05-14 13:05:34
40
转载 OpenAI o3接近人类医生水平!OpenAI重磅推出HealthBench:医疗新基准
麻醉学、皮肤病学、放射诊断学、急诊医学、家庭医学、普通外科、内科、介入与放射诊断学、医学遗传与基因组学、神经外科、神经内科、核医学、妇产科学、眼科学、骨科、耳鼻喉科、病理学、儿科学、物理医学与康复、整形外科、精神病学、公共卫生与预防医学、放射肿瘤学、胸外科、泌尿外科、血管外科。在研究中,OpenAI团队评估了多个模型,包括o3、Grok 3、Claude 3.7 Sonnet等,重点考察其在性能、成本和可靠性方面的表现。甚至,o3、GPT-4.1回答质量超越了医生的水平。
2025-05-14 13:05:34
50
转载 MICCAI 2025开奖!投稿群成立!
仅限进入第二轮的同学加入,交流群是为了方便沟通投稿注意事项、rebuttal及后续开会等事宜,非诚勿扰!CVer小助手会拉你进入NeurIPS 2025 投稿交流群!CVer小助手会拉你进入MICCAI 2025 投稿交流群!CVer小助手会拉你进入IJCAI 2025 投稿交流群!CVer小助手会拉你进入ICML 2025 投稿交流群!CVer小助手会拉你进入ICLR 2025 投稿交流群!CVer小助手会拉你进入CVPR 2025 投稿交流群!CVer小助手会拉你进入AAAI 2025 投稿交流群!
2025-05-14 13:05:34
24
转载 为什么你在国内高校实验室里很难发出顶会顶刊?
可以建立从选题到投稿发表的系统认知,学习一整套的科研方法论,迅速建立科研框架,具备发表第一篇SCI的系统能力。,可以吸收科研大牛的顶尖科研思想,学会发表顶会顶刊的科研套路,调整自己的科研思路,成功发出第一篇顶会顶刊。因此,对于着急发文章的人或者自身学习能力比较差的人,有一位科研经验丰富的导师手把手指导就非常有必要。但对于那些已经发过几十篇的科研老手来说,靠着成熟的套路,几个月完成一篇顶级文章就是信手拈来。因此,新手要想快速发出论文,一定要先掌握正确的方法,然后再同步实践,快速提升自身执行力和。
2025-05-14 13:05:34
8
转载 ICML 2025 | FG-CLIP:细粒度视觉和文本对齐,解决CLIP的“近视“问题!
该模型处理不同图像描述长度的能力突出了其在多模态匹配中的通用性和鲁棒性。在图文检索任务中,长文本描述可以涵盖从全局场景到局部细节的全面信息,使得模型能够在多个层次上与图像特征进行比对和匹配,从而提升检索的准确性和相关性。显然这个描述是错误的,这就是CLIP的“视觉近视”问题:会因为对比损失倾向于拉近全局图像与文本的嵌入,而非局部区域的对齐,削弱了细粒度特征学习。这套丰富而系统的数据集显著提升了模型识别精细特征的能力,为FG-CLIP的训练奠定了扎实基础,使其在视觉与文本特征的细粒度理解方面表现卓越。
2025-05-14 13:05:34
10
转载 ICML 2025 | FG-CLIP:细粒度视觉和文本对齐,解决CLIP的“近视“问题!
该模型处理不同图像描述长度的能力突出了其在多模态匹配中的通用性和鲁棒性。在图文检索任务中,长文本描述可以涵盖从全局场景到局部细节的全面信息,使得模型能够在多个层次上与图像特征进行比对和匹配,从而提升检索的准确性和相关性。显然这个描述是错误的,这就是CLIP的“视觉近视”问题:会因为对比损失倾向于拉近全局图像与文本的嵌入,而非局部区域的对齐,削弱了细粒度特征学习。这套丰富而系统的数据集显著提升了模型识别精细特征的能力,为FG-CLIP的训练奠定了扎实基础,使其在视觉与文本特征的细粒度理解方面表现卓越。
2025-05-14 13:05:34
5
转载 “Transformer”八子之一创业团队提出CTM:持续思维机器
值得注意的是,CTM 学会了一种非常类似人类的求解迷宫的方法——从它的注意力模式来看,它实际上是在沿着迷宫的路径前进。研究团队表示,他们观察到的神经元动态在某种程度上更像是在真实大脑中测量到的动态,而不是更传统的人工神经网络,后者表现出的行为多样性要少得多。尽管深度学习推动了人工智能领域的变革式发展,但自 20 世纪 80 年代以来,人工智能模型中使用的人工神经元的基础模型在很大程度上没有变化,仍然主要使用神经元的单一输出(代表神经元的放电情况),忽略了神经元相对于其他神经元放电的精确时间。
2025-05-13 13:05:47
57
转载 苏炳添,出任院长!
2025年2月24日暨大招生网发布的《2025年优秀运动员保送拟录取名单的通知》显示,全红婵进入拟录取名单。他在《体育科学》2019年第2期发表了论文《新时代中国男子100m短跑:回顾与展望》一文,作为第一作者“揭秘”自己如何成为“亚洲飞人”。今年2月18日,2025年全国室内田径大奖赛第3站比赛中,作为年龄最大的参赛选手,苏炳添在男子60米决赛中跑出6秒65的成绩夺冠。东京奥运会上,苏炳添在男子100米半决赛中跑出9秒83,最终在决赛中获得第六名,苏炳添出生于1989年8月,广东中山人,国际级运动健将,
2025-05-12 13:05:45
40
转载 DeepSeek精度效率双提升!华为&信工所提出思维链“提前退出”机制
在HumanEval和BigCodeBench两个programming测试集上,作者的方法实现了平均减少64.9%的生成长度,而pass@1提高了2.1个点,并对0.95附近的阈值表现鲁棒,不会有显著波动。直觉上,DEER中的答案诱导和置信度评价的计算在推理过程中引入了额外的延迟,特别是对于测试答案仍然很长的代码生成任务,这降低了通过缩短思维链序列而获得的效率增益。定量结果表明,在仅使用20%的推理步骤就提前退出的静态设定下,对于MATH-500,有60.8%的正确回答样本依然能保持正确;
2025-05-12 13:05:45
60
转载 ChatGPT:对不起,我让美国大学完蛋了
Wendy解释说,如果不这样进行系统级别的设定,AI会给出非常高阶复杂的写作风格,而那不是她想要的,也不是现阶段她的水平能写出来——老师们一眼就能出到底是「谁」写的。但当作弊成为「默认选项」——不论是伤心的Lee小哥,还是无法拒绝ChatGPT的大学学生们——真正值得追问的不是「谁作弊了」,而是「谁应该为这一切买单」。互联网上最有名的「喷子」之一Gary Marcus认为,「大量的学生将从大学毕业,带着学位进入职场,但实际上他们几乎是文盲」可能是这篇文章最正确的结论。
2025-05-12 00:00:17
61
转载 突破多模态奖励瓶颈!中科院清华快手联合提出R1-Reward:用强化学习赋予模型长期推理能力
总的来说,就是直接把PPO或者Reinforce++用在奖励模型训练上,会因为损失计算和优势归一化这两个环节内在的问题,在高效率训练或者训练后期特定数据分布下,引发数值不稳定,最终影响模型效果。更有趣的是,他们发现通过在推理时多做几次计算(比如采样5次或15次,然后投票选最多的答案),R1-Reward的性能还能进一步大幅提升,这说明RL方法在优化奖励模型方面潜力巨大。更有意思的是,他们还试了另一种策略叫“Any Correct”,就是只要模型输出的K次结果里有一次是正确的,就算对。
2025-05-12 00:00:17
111
转载 超越DeepSeek-R1,英伟达开源新王登顶!训练细节全曝光
(OnLine Reward-Policy Optimization)方法,最大化模型在HelpSteer2数据集上的预测奖励,奖励模型使用的是Llama-3.1-Nemotron-70B-Reward。在神经架构搜索(NAS)阶段之后,LN-Super和LN-Ultra都进行了额外的训练,以提升模块之间的兼容性,并恢复在模块替换过程中可能出现的质量损失。,例如DeepSeek-R1-Distilled-Llama-70B,在保持良好指令遵循能力的同时展现出强大的推理能力。
2025-05-11 00:01:58
74
转载 新突破!Harmon:协调视觉表征以实现统一多模态理解和生成
MAR 作为一种基于图像掩码建模的生成范式,沿袭了表征学习 MAE 的 Encoder-Decoder 框架,Harmon 的作者们发现 MAR Encoder 在图像生成训练中,同时学会对视觉语义的建模。(2)理解生成统一使用 VQGAN/VAE 表征,如 Transfusion、Show-o、ViLA-u 等,由于 VQGAN/VAE 用于图像压缩,主要表征纹理等细节,缺乏视觉语义的建模,此类方法通常理解能力偏弱。论文链接: https://arxiv.org/abs/2503.21979。
2025-05-11 00:01:58
52
转载 “本科生发14篇SCI论文”?处理结果公布!
据媒体此前报道,刘某乔为重庆大学化学化工学院化学工程与工艺专业2021级学生,发表SCI一区期刊论文5篇、SCI二区期刊论文9篇,获国家发明专利授权3项。指称在使用“不同的实验条件、初始样品、处理过程及测试仪器”情况下,产生的实验结果图谱、结果数据曲线高度相似,相关图片存在“明显的截取篡改、变形拉伸痕迹”。南方都市报报道,9日,记者还获悉了一份发布于2022年的举报信,举报刘某华“存在编造实验内容、变造实验数据等学术不端行为”。近日,一篇获奖文章引发关注,其中介绍,来自重庆大学的本科生刘某乔,
2025-05-11 00:01:58
64
转载 2025顶会上的150个即插即用模块
其中,对比驱动特征聚合模块作为即插即用的特征融合模块,能够有效区分前景和背景特征,从而提升分割精度。论文提出了一种名为BHViT的混合视觉Transformer架构,通过引入即插即用的卷积模块(如多尺度分组空洞卷积模块MSGDC),有效降低了计算复杂度,同时提升了二值化视觉Transformer的性能。论文提出MambaOut模型,移除Mamba模块中的状态空间模型,用门控卷积块替代,验证其在视觉任务(如ImageNet分类)中优于传统视觉Mamba模型,说明在这些任务中SSM并非必要。
2025-05-08 13:05:52
119
转载 突发!曝阿里通义薄列峰离职,此前为应用视觉团队负责人
其研究领域包括机器学习、深度学习、计算机视觉、机器人、自然语言处理等多个领域,曾担任包括NeurIPS、CVPR、ICCV、ECCV、AAAI、SDM等在内的顶会程序委员会委员。ChatGPT掀起大模型浪潮之后,阿里重用通义实验室,达摩院原来的多个研究团队,如语言技术实验室、语音实验室、XR实验室等,在阿里云重组成大模型研究部门 “通义实验室”。知情人士透露,他已经加入某互联网大厂,base美国,担任多模态模型部副总经理,负责部门整体工作,直接向公司副总裁汇报。如今,薄列峰离职后的接替人选也成谜。
2025-05-08 13:05:52
77
转载 预计190所!大学,批量倒闭
华夏科大方面曾表示,少子化的趋势不可能逆转,华夏属于工科学校,招生情况只会越来越糟糕,因此该校大约从2021年开始集结共识,要引进外部资源,才会慢慢促成与台科大的合作。除了台科大和华夏科大外,筹备合并事宜多年的慈济大学和慈济科技大学,确定2024年8月起合并为新的“慈济大学”,这也是我国台湾省第二起技专和普通大学的合并案。据报道,2023年12月,日本的奈良佐保短期大学、修实短期大学、福冈女学院短期大学、武库川女子大学短期大学部、美作大学短期大学部、铃鹿大学短期大学相继宣布停止招生。
2025-05-08 00:00:04
75
转载 CVPR 2025 | 突破注意力机制!vHeat:基于热传导的视觉表征模型
在 COCO 数据集上, vHeat 也拥有性能优势:在 fine-tune 12 epochs 的情况下,vHeat-T/S/B 分别达到 45.1/46.8/47.7 mAP,超过了 Swin-T/S/B 达 2.4/2.0/0.8 mAP,超过 ConvNeXt-T/S/B 达 0.9/1.4/0.7 mAP。可以明显看出,由于 O (N^1.5) 的计算复杂度,vHeat 相比于对比的模型有更快的推理速度、更低的显存占用以及更少的 FLOPs,并且在图像分辨率越大时,优势会更为明显。
2025-05-08 00:00:04
181
转载 突发!OpenAI公布重大公司调整:放弃成为营利性公司
OpenAI的非营利董事会——那个Ilya还在曾短暂解雇Sam Altman的董事会——将继续监督其商业子公司,而这个子公司也将从一个「有上限的盈利企业」转变为像Anthropic和xAI一样的公益公司(PBC)。Sam Altman说,过去他认为OpenAI是唯一的——在看起来可能会有一个主导的AI时代努力,设计一个「限制汇报的公司」是有意义的——但在一个有许多优秀人工智能公司的世界里就没有意义了。以能够获取资源的方式运营,使我们的服务能广泛惠及全人类——这如今需要数千亿美元,未来可能需要数万亿美元。
2025-05-06 13:05:24
89
转载 大学导师开会带塑料袋给学生打包茶歇,师兄:导,下回记得用黑色袋子...
虽然心有猛虎,但也要细嗅蔷薇,不要和知名教授抢最后一块三明治,也不能吃完甜点后拿着两根香蕉进会场。有老师去大学演讲,说自己一开始没准备来的,后来听说有茶歇,老师:早说嘛~ 并掏出了自己的打包袋。当然了,茶歇环节也只是供与会人员交流沟通用,希望大家在吃饱的同时,也能学习到很多知识。学术会议上的茶歇已经不仅仅代表着车厘子和小蛋糕了,更是师门的团结,导师的爱护!在会议尾声,悄悄移动至茶歇区附近,选择一个有利位置,暗中观察,等待最佳时机。其实这些东西平时也能吃到,但不知道怎么的,放在茶歇台上,它就是那么的诱人。
2025-05-06 00:01:21
60
转载 8/8/7分被NeurIPS拒稿,谢赛宁读博投的首篇论文,10年后获得时间检验奖!
为了比较 DSN 与 CNN 分别学习到什么特征,本文从 CIFAR-10 数据集的十个类别中各选取一个示例图像,运行一次前向传播,并在图 (3) 中展示从第一个(底部)卷积层学习到的特征图。DSN 学习到的特征图比 CNN 学习到的特征图更直观。无论在 DSN-SVM 与 CNN-SVM 之间,还是 DSN-Softmax 与 CNN-Softmax 之间,本文方法均取得一致性性能提升,并在 MNIST、CIFAR-10、CIFAR-100 及 SVHN 数据集上刷新当前最优纪录。
2025-05-06 00:01:21
58
转载 校名确定!这所学院,将更名
学校2016年通过教育部普通高等学校本科教学工作合格评估,2017年增列为贵州省硕士学位授权立项建设单位,2018年被遴选为贵州省应用型转型试点高校,2024年从“省市共建,以市为主”调整为“省政府统筹协调管理、省教育厅主管”的管理体制。、审核评估整改为牵引,以开展深入贯彻中央八项规定精神学习教育为契机,聚焦高质量发展这个首要任务,强内涵、优结构、突特色、提质效,以“拼”的劲头、“闯”的勇气、“实”的作风,推动学校发展再上新台阶。,完整、准确、全面贯彻新发展理念,加快构建新发展格局。
2025-05-05 00:00:00
43
转载 CVPR 2025|清华&华科大提出INP-Former:超强异常检测新方法!
为解决这一难题,来自清华大学和华中科技大学的研究团队提出了一种全新的方法 ——INP-Former,它能够从单张测试图像中提取内在正常原型(INPs),并利用这些 INPs 指导图像重建,通过重建误差实现异常检测。在我们的研究中,将M设置为6,既能保证性能,又能有效避免异常信息的干扰。INP-Former,该方法通过从单张测试图像中动态提取内在正常原型(INPs),并利用这些INPs指导图像重建,通过重建误差实现异常检测,展现出卓越的性能和强大的泛化能力,为异常检测领域带来了新的突破。
2025-05-05 00:00:00
107
转载 CVPR 2025 最佳论文候选!VGGT:开创高效3D视觉新范式!
有趣的是,研究团队还意外发现,利用模型预测的深度图与相机参数反投影生成的点云,其质量甚至超过直接回归的点图,这一现象揭示了模型对几何一致性内在规律的自发学习能力。其博士工作聚焦于端到端几何推理框架的创新,曾主导开发PoseDiffusion、VGGSfM,以及本次提出的通用3D基础模型VGGT,相关成果均发表于CVPR、ICCV等顶级会议,推动了数据驱动式3D重建技术的演进。视觉重建作为所有 3D 任务的核心,VGGT 的成功标志着 3D 视觉领域或许即将迎来一个全新的,基础模型的时代。
2025-05-05 00:00:00
263
转载 CVPR 2025 最佳论文候选!LeCun团队提出NWM:导航世界模型
只是 LeCun 团队的这个世界模型更加强调世界模型的导航能力,其能够在已知环境中按照轨迹行进,也能在未知环境中自己寻找前进道路,还能执行路径规划。其中假设,对于导航已知环境,模型的容量是最重要的,图 5 中的结果表明,CDiT 确实在具有多达 1B 个参数的模型中表现更好,同时消耗的 FLOP 不到 ×2。基于过去的观察和目标图像,NWM 可以使用交叉熵方法找到一条轨迹,同时尽可能降低预测图像和目标图像之间的 LPIPS 相似度,实验结果见下表 2,可以看到 NWM 的规划能力足以比肩 SOTA 策略。
2025-05-03 23:59:30
65
转载 新一届院士名单,公布
其最突出的发现是:病原体小RNA可迁移至宿主植物并抑制其免疫反应(这一现象被称为跨界RNA干扰),同时植物小RNA也能反向影响病原体毒力,证实了跨界RNA干扰和小RNA运输的双向性。并在2018年,他们三人共同获得了图灵奖,表彰其在DL领域的开创性贡献。一直以来,他本人的研究主要集中于神经网络和深度学习,特别是在上世纪90年代,当这一算法被主流AI界忽略时,依旧坚持不懈推动这一领域的发展。Bengio的学术生涯始于1993年,他在蒙特利尔大学担任教授,并创立了MILA全球最大的大学AI研究机构之一。
2025-05-02 23:59:52
61
转载 NeurIPS 2025 即将截稿!投稿群成立
大家抓紧扫码加入学习!CVer小助手会拉你进入NeurIPS 2025 投稿交流群!CVer小助手会拉你进入ACM MM 2025 投稿交流群!CVer小助手会拉你进入MICCAI 2025 投稿交流群!扫码添加微信,小助手会拉你进NeurIPS 2025交流群。CVer小助手会拉你进入IJCAI 2025 投稿交流群!CVer小助手会拉你进入ICCV 2025 投稿交流群!CVer小助手会拉你进入ICML 2025 投稿交流群!CVer小助手会拉你进入CVPR 2025 投稿交流群!
2025-05-02 23:59:52
142
转载 ICML 2025 | 英伟达提出SANA 1.5:线性扩散Transformer刷新文生图SOTA!
剪枝模型的适配过程非常简单,仅需100步微调,剪枝后的1.6B参数模型就能达到与完整的4.8B参数模型相近的质量,并且优于SANA 1.0的1.6B模型。SANA是一个超高效的文本生成图像框架,能生成高达4096×4096分辨率的图像,不仅画质清晰,还能让图像和输入文本精准匹配,而且生成速度超快,在笔记本电脑的GPU上就能运行。首先,研究者提出了一种高效的模型增长策略,使得SANA可以从1.6B(20层)扩展到4.8B(60层)参数,同时显著减少计算资源消耗,并结合了一种节省内存的8位优化器。
2025-05-02 23:59:52
56
转载 清华出手,挖走美国顶尖AI研究者!前DeepMind大佬被抄底,美国人才倒流中国?
因为AI的研究是极度专业化的,项目中损失一名博士生,可能就会让项目倒退数月,甚至数年!OpenAI著名研究科学家Noam Brown爆料称,已经在美国居住了12年的加拿大籍AI研究员,现就职于OpenAI的Kai Chen,近日被美国拒发绿卡。德扑之父Noam Brown表示,Kai Chen是自己共事过的最优秀的AI研究员之一,如今却被迫离开美国,实在让人担忧。甚至,他建议欧洲抓紧时机,趁此时大举抄底美国科学家——开出良好的薪酬,提供足够的研究设施,给予研究自由,他们就会来了!,大家抓紧扫码加入!
2025-05-01 23:59:52
78
转载 突发:中科院1区TOP期刊,停止收稿!
涉及美国国家过敏与传染病研究所(NIAID)、美国国家儿童健康与人类发展研究所(NICHD)、美国国家少数族裔健康与健康差距研究所(NIMHD)、美国国家护理研究所(NINR)和美国国家老龄化研究所 (NIA)等机构。因此,保持投稿计划的弹性,预设多个目标刊物,或尝试并行投递不同研究方向的工作,是一种更为稳妥的策略。面对EHP与JHP的突发停稿,众多作者尤其是环境、公共卫生方向的科研人员有意于投稿该刊的必然陷入两难:原本计划投递的重要成果,如今肯定不敢再投。,其工作人员的补贴、差旅费也被无限期冻结。
2025-05-01 23:59:52
183
转载 NeurIPS 2025 倒计时!还有ACM MM、ICCV、ICML、MICCAI 微信群!
每天分享最新最优质的AI工作,假期不停更!CVer小助手会拉你进入NeurIPS 2025 投稿交流群!CVer小助手会拉你进入ACM MM 2025 投稿交流群!CVer小助手会拉你进入MICCAI 2025 投稿交流群!扫码添加微信,小助手会拉你进NeurIPS 2025交流群。CVer小助手会拉你进入IJCAI 2025 投稿交流群!CVer小助手会拉你进入ICCV 2025 投稿交流群!CVer小助手会拉你进入ICML 2025 投稿交流群!CVer小助手会拉你进入CVPR 2025 投稿交流群!
2025-04-30 23:59:38
68
转载 CVPR 2025 Oral | 南京大学提出UniAP:分布式训练算法!大模型训练加速3.8倍!
大模型的训练往往采用多机多卡的分布式训练,大模型的分布式训练挑战巨大,即使硬件足够,不熟悉分布式训练的人大概率(实验中验证有 64%-87% 的概率)会因为超参数设置(模型怎么切分和排布、数据怎么切分和排布等)不合理而无法成功运行训练过程。UniAP 是首个能实现层内并行策略(张量并行等)和层间并行策略(流水线并行等)联合优化的工作。而现有的自动并行方法存在的问题是它们要么只考虑层内或层间两类并行策略中的一类并行策略,要么把两类并行策略做分阶段优化而不是联合优化,求解得到的并行策略的训练效率存在提升空间。
2025-04-30 23:59:38
52
转载 所有博士满2年直升副教授,无需评审!硕士配偶带入编!一高校招聘引热议
(二)考核面试由二级学院对拟考察的博士进行资格初审,通过资格初审人员进入考核流程,考核工作由招聘学院实施,根据不同岗位需求,一般采取试讲、答辩和实践操作等方式对应聘人员的思想品德、学术背景、科研成果、操作技能和适应工作能力等考核指标进行评价。兰州文理学院是一所以文为主,文、艺、管、工协同发展的地方性、应用型、综合型公办本科院校,教育部对口支援计划高校,硕士学位授予立项建设单位,文旅部非遗传承人群研修基地,首届甘肃省文明校园,新时代甘肃省高校党建示范院校。(主要面向25届、26届及之后的同学)!
2025-04-29 23:59:48
46
转载 清华大学王智课题组招收博士后
发表学术论文百余篇,第一作者出版英文专著两部,6次获得重要国际会议、期刊论文奖励,包括多媒体领域高水平会议ACM Multimedia最佳论文奖(国内高校首次第一单位获得),2022年IEEE Transactions on Multimedia唯一最佳论文奖。- 博士后年薪为12万元/年,如获选“博新计划”、“水木学者”等项目,年薪可达到28-30万元/年不等;- 品行端正,身体健康,热爱科研,具有严谨的治学态度和良好的团队合作精神,能够全职从事博士后研究工作。(主要面向25届、26届及之后的同学)!
2025-04-29 23:59:48
26
转载 突发!Hinton签署联名信:公开抵制OpenAI重组!10名前OpenAI员工也参与了
为了确保他们在构建AGI的竞赛中的动力永远不会损害他们的使命,他们注册为非营利组织,并在法律和结构上将构建AGI的目标置于使命之下。拟议的重组将颠覆OpenAI的慈善使命。在刚刚签署的公开信中,Hinton表示,OpenAI独特的非营利法律结构是防止商业利益凌驾使命的保障,重组将削弱公众利益的保护机制,违反公司章程,构成对其非营利责任的威胁。他们在公开信的最后写道,OpenAI的成立是为了确保AGI的安全发展并造福全人类,其目前的架构在法律上将营利动机置于「确保AGI的安全发展,造福全人类」的使命之下。
2025-04-29 23:59:48
14
机器学习实战(中文版+英文版+源代码)
2017-09-15
2017年互联网女皇报告中英文完整版
2017-06-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人