自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 如何入门画图?matplotlib绘图技巧(科研必学入门课)嘎嘎好用

plt.show()matplotlib是一个功能强大且灵活的绘图库,适用于各种数据可视化需求。通过掌握matplotlib的基本概念和常用函数,你可以轻松创建各种类型的图表,并进行自定义和高级操作。

2024-11-06 23:59:02 486

原创 经验总结,超实用!anaconda以及终端常见、实用的命令大全(错过后悔一被子

经验总结,超实用!anaconda以及终端常见、实用的命令大全(错过后悔一被子

2024-11-05 23:54:07 686

原创 (复习自用)模电:基本放大电路经典习题、例题(华成英版第二章课后习题及答案)

第二章课后习题第三章例题3.3.1

2024-11-05 23:34:47 184

原创 leetcode hot100 合并区间(解法:对左端点排序,代码实现以及逻辑)

用于巩固。

2024-10-22 00:37:10 359

原创 LaTeX 初学者教程:使用 Overleaf 撰写高质量论文(超级精炼版)

LaTeX 是一种语言工具,帮助你只使用键盘就完成论文的撰写与排版。通过敲代码,论文内容会按照指定格式排布,实现排版效果。LaTeX 有其优点,也有明显的缺点。当面对排版没有精确要求,数学内容简单且篇幅较短的论文时,请直接打开你的 Word。当面对限时的论文撰写工作时,修改 LaTeX 代码也不如直接修改 Word 文档来得直观方便。新技能提供新可能,而非新桎梏。如果这篇文章有帮助到你,可以考虑关注一下我吗~ 我会非常开心的!欢迎各位大佬指出问题!

2024-10-21 01:43:37 2261

原创 ResNet论文精读

ResNet通过引入残差学习和残差块,成功解决了深度神经网络训练中的梯度消失和梯度爆炸问题,使得训练非常深的网络成为可能。其架构设计简洁有效,在多个图像分类任务上取得了显著的性能提升,成为深度学习领域的一个重要里程碑。

2024-10-16 23:54:44 735

原创 Leetcode Hot100最大子数组和(动态规划)

题目链接。

2024-10-14 00:02:57 362

原创 GoogLeNet论文简读笔记(Going Deeper with Convolutions)

因为速读,我直接略过了Introduction和Related work,直接从motivation开始的。

2024-10-12 23:59:12 1003

原创 Leetcode 560. 和为K的子数组(两数之和的子数组版本)(枚举/前缀和+哈希)

到0,如果我们知道 [j,i] 子数组的和,就能 O(1) 推出 [j−1,i] 的和,因此这部分的遍历求和是不需要的,我们在枚举下标 j 的时候已经能 O(1) 求出 [j,i] 的子数组之和。实际上两层遍历即可枚举出所有的子数组。的连续子数组个数,我们需要统计符合条件的下标。] 这个子数组的和恰好为。那么我们可以首先遍历。

2024-10-12 18:28:26 920

原创 LeNet学习笔记(卷积+池化+relu

用于降低特征图的尺寸,减少计算量,同时保留重要的特征信息。于是就分出了max和ave两种。max pool适合特征提取(以为取最大值,会保留特征,对输入的显著特征更加敏感,适合图像检测和目标分类)ave pool使特征过度的更加平滑(适合语义分割)

2024-10-11 23:51:52 789

原创 Leetcode 接雨水

hot100第一道hard。

2024-10-11 22:39:14 270

原创 VGG论文学习笔记(markdown格式)

还有一种更细致的做法是144-crop evaluation,即在ImageNet数据集中,将图像调整到4个不同的尺度,然后从每个尺度中裁剪出3个区域(最左、正中、最右),并对每个区域及其水平翻转图像进行预测,总共得到144个预测结果,再取平均值。在深度学习模型的训练中,多尺度训练(multi-scale training)是一种常见的实践,它涉及在训练过程中使用不同尺寸的输入图像。在目标检测任务中,多尺度评估通常涉及在不同尺度的图像上测试模型,以评估其对不同大小物体的识别能力。

2024-10-11 22:28:23 1021

原创 VGN论文学习笔记(markdown格式)

还有一种更细致的做法是144-crop evaluation,即在ImageNet数据集中,将图像调整到4个不同的尺度,然后从每个尺度中裁剪出3个区域(最左、正中、最右),并对每个区域及其水平翻转图像进行预测,总共得到144个预测结果,再取平均值。在深度学习模型的训练中,多尺度训练(multi-scale training)是一种常见的实践,它涉及在训练过程中使用不同尺寸的输入图像。在目标检测任务中,多尺度评估通常涉及在不同尺度的图像上测试模型,以评估其对不同大小物体的识别能力。

2024-10-11 22:25:03 509

原创 ESP8266 模块和开发板的区别

ESP8266 模块适合需要集成到现有系统中的场景,提供基本的 Wi-Fi 功能。ESP8266 开发板适合学习和开发,提供完整的开发环境和调试接口,方便快速上手。根据你的需求选择合适的设备,如果是初学者或需要快速开发,建议选择开发板;如果是产品集成,可以选择模块。

2024-10-07 20:34:46 680

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除