ST表详解

ST表学习
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例

举例:

给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1。

方法:ST算法分成两部分:离线预处理 (nlogn)和 在线查询(O(1))。虽然还可以使用线段树、树状链表等求解区间最值,但是ST算法要比它们更快,而且适用于在线查询。

(1)离线预处理:运用DP思想,用于求解区间最值,并保存到一个二维数组中。

(2)在线查询:对给定区间进行分割,借助该二维数组求最值

具体解释:

(1)离线预处理:

ST算法使用DP思想求解区间最值,貌似属于区间动态规划,不过区间在增加时,每次并不是增加一个长度,而是使用倍增的思想,每次增加2^i个长度。

使用F[i,j]表示以i为起点,区间长度为2^j的区间最值,此时区间为[i,i + 2^j - 1]。

比如,F[0,2]表示区间[0,3]的最小值,即等于4,F[2,2]表示区间[2,5]的最小值,即等于1。

在求解F[i,j]时,ST算法是先对长度为2^j的区间[i,i + 2^j - 1]分成两等份,每份长度均为2^(j - 1)。之后在分别求解这两个区间的最值F[i,j - 1]和F[i + 2^(j - 1),j - 1]。,最后在结合这两个区间的最值,求出整个区间的最值。特殊情况,当j = 0时,区间长度等于1,即区间中只有一个元素,此时F[i,0]应等于每一个元素的值。

举例:要求解F[1,2]的值,即求解区间[1,4] = {4,6,10,1}的最小值,此时需要把这个区间分成两个等长的区间,即为[1,2]和[3,4],之后分别求解这两个区间的最小值。此时这两个区间最小值分别对应着F[1,1] 和 F[3,1]的值。

状态转移方程是 F[i,j] = min(F[i,j - 1],F[i + 2^(j - 1),j - 1])

初始状态为:F[i,0] = A[i]。

在根据状态转移方程递推时,是对每一元素,先求区间长度为1的区间最值,之后再求区间长度为2的区间最值,之后再求区间长度为4的区间最值….,最后,对每一个元素,在求解区间长度为log2^n的区间最值后,算法结束,其中n表示元素个数。

即:先求F[0][1],F[1][1],F[2][1],F[3][1],,,F[n][1],再求.F[0][2],F[1][2],F[2][2],F[3][2],,,F[m][2],… 。

(2)在线处理:这里我们是已知待查询的区间[x,y],求解其最值。

在预处理期间,每一个状态对应的区间长度都为2^i。由于给出的待查询区间长度不一定恰好为2^i,因此我们应对待查询的区间进行处理。

这里我们把待查询的区间分成两个小区间,这两个小区间满足两个条件:(1)这两个小区间要能覆盖整个区间(2)为了利用预处理的结果,要求小区间长度相等且都为2^i。注意两个小区间可能重叠。

如:待查询的区间为[3,11],先尽量等分两个区间,则先设置为[3,7]和[8,11]。之后再扩大这两个区间,让其长度都等于为2^i。刚划分的两个区间长度分别为5和4,之后继续增加区间长度,直到其成为2^i。此时满足两个条件的最小区间长度为8,此时i = 3。

在程序计算求解区间长度时,并没有那么麻烦,我们可以直接得到i,即等于直接对区间长度取以2为底的对数。这里,对于区间[3,11],其分解的区间长度为int(log(11 - 3 + 1)) = 3,这里log是以2为底的。

根据上述思想,可以把待查询区间[x,y]分成两个小区间[x,x + 2^i - 1] 和 [y - 2^i + 1,y] ,其又分别对应着F[x,i]和F[y - 2^i + 1,i],此时为了求解整个区间的最小值,我们只需求这两个值得最小值即可,此时复杂度是O(1)。

转载(http://blog.csdn.net/insistgogo/article/details/9929103)

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;

#define N 2000

int stmax[N][20],stmin[N][20],mn[N];
int a[N];

int t,q,n;
int x,y;

void init()
{
    mn[0]=-1;
    for (int i=1;i<=n;i++)
    {
        mn[i]=((i & (i-1))==0) ? mn[i-1]+1 : mn[i-1];
        stmax[i][0]=stmin[i][0]=a[i];
    }
    for (int j=1;j<=mn[n];j++)
        for (int i=1;i+(1<<j)-1<=n;i++)
        {
            stmax[i][j]=max(stmax[i][j-1],stmax[i+(1<<(j-1))][j-1]);
            stmin[i][j]=min(stmin[i][j-1],stmin[i+(1<<(j-1))][j-1]);
        }
}

int rmq_max(int L,int R)
{
    int k=mn[R-L+1];
    return max(stmax[L][k],stmax[R-(1<<k)+1][k]);
}

int rmq_min(int L,int R)
{
    int k=mn[R-L+1];
    return min(stmin[L][k],stmin[R-(1<<k)+1][k]);
}

int main()
{
    scanf("%d",&t);
    while (t--)
    {
        scanf("%d",&n);
        for (int i=1;i<=n;i++)
            scanf("%d",&a[i]);
        init();
        scanf("%d",&q);
        while (q--)
        {
            scanf("%d%d",&x,&y);
            printf("%d %d\n",rmq_max(x,y),rmq_min(x,y));
        }
    }
    return 0;
}
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ST(Sparse Table)是一种用于解决区间查询问题的数据结构。它可以支持在 O(1) 的时间复杂度内查询一个区间中的最大值、最小值、和、积等等。 ST的基本思想是利用区间重叠的性质,将区间划分成若干个长度为2的子区间,对每个子区间记录其区间内的最大值、最小值、和、积等信息。这些子区间的信息可以通过递归的方式预处理出来,构建出一张类似二维格的 ST。查询一个区间的信息时,可以通过查询两个子区间的信息并取其合并得到。 ST的构建时间复杂度为 O(n log n),其中 n 是数据的规模。查询一个区间的信息的时间复杂度为 O(1)。ST的空间复杂度为 O(n log n)。 ST常用于解决区间查询问题,例如在数组中查询一个区间的最大值、最小值、和、积等信息。同时,ST也可以用于支持动态区间查询,即在不断修改数组元素的情况下,仍然能够在 O(1) 的时间复杂度内查询任意一个区间的信息。 ### 回答2: ST,全称Sparse Table,是一种常见的数据结构,用于支持高效地查询一段区间内的最值操作。它主要用于快速处理静态的区间最值查询问题。 ST的构建过程很简单。首先,我们需要预处理一个二维数组dp,其中dp[i][j]示从位置i开始,长度为2^j的区间内的最值。这个数组的大小需要根据具体问题来确定。 接下来,我们对dp数组进行初始化。假设我们要求最小值,那么dp[i][0]就等于位置i的元素值。然后,我们可以通过以下递推公式计算出dp数组的其他元素:dp[i][j] = min(dp[i][j-1], dp[i + 2^(j-1)][j-1])。这个公式示,从位置i开始,长度为2^j的区间内的最值等于从位置i开始,长度为2^(j-1)的两个子区间的最值之间的较小值。 构建好dp数组后,我们就可以通过查询来快速得到区间的最值了。对于一个查询操作,我们只需要找到最小的k,使得2^k大于等于查询区间的长度。然后,我们可以通过以下递推公式计算出查询结果:min(dp[left][k], dp[right - 2^k + 1][k])。其中,left和right分别示查询区间的左右边界。 ST的时间复杂度主要来自于构建dp数组的过程,为O(nlogn),其中n为数据的长度。查询的时间复杂度为O(1),因为我们只需要进行常数次操作即可得到结果。 总结来说,ST是一种用于高效查询区间最值的数据结构。它通过预处理和递推的方式构建二维数组,可以快速回答各种区间最值查询问题。它的时间复杂度比较低,适用于快速查询静态数据的场景。 ### 回答3: ST是一种可以高效求解多种区间查询问题的数据结构。ST全称为Sparse Table,它通过预处理输入序列建立一个二维格,用于快速回答各种区间查询问题。 在ST中,将序列中的每个元素作为第0层,每个区间的最小值或最大值作为第1层,第2层是第1层区间的最小值或最大值,以此类推,直到第log(n)层。其中n是输入序列的长度。 ST的构建是通过动态规划的思想来完成的。假设有一个区间[a, b],查询区间的长度为query_len,则可以将该查询区间分为两个长度为query_len/2的子区间[a, a+query_len/2-1]和[a+query_len/2, b]。通过之前已经计算到的结果,可以很快得到子区间的最小值或最大值,然后将两个子区间的最小值或最大值作为该查询区间的结果。这样,将自顶向下地计算每个查询区间的结果,即可构造出整个STST的查询是通过将查询区间拆解成若干个长度为2的幂次的小区间,然后对应每个小区间查询结果进行合并得到的。例如,查询区间[a, b]可以拆解成多个小区间,分别是[a, a+2^k-1]、[a+2^k, a+2^(k+1)-1]、…、[b-2^k+1, b],其中k是满足2^k <= b-a+1的最大整数。然后对于每个小区间,在ST中查找得到最小值或最大值,再通过合并获得整个查询区间的结果。 ST的构建时间复杂度为O(n log(n)),其中n是输入序列的长度。每次查询的时间复杂度为O(1)。ST适用于各种区间查询问题,如最小值、最大值、和、乘积等。但只适用于静态问题,即查询的区间不会发生改变。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值