题目链接:https://nanti.jisuanke.com/t/16445
题意:
给你一个n*n大小的01矩阵,和一个k*k大小的锤子,锤子只能斜着砸,问只砸一次最多能砸到多少个1。
题解:
将原矩阵顺时针旋转45°,二维前缀和预处理,然后枚举每一个可能砸到的正方形之和并取最大。
注:枚举的正方形的四个顶点必须是从原矩阵旋转过来的点,否则会出现砸到下面的这种情况:
(*代表不是原矩阵旋转过来的点,阴影代表砸到的部分)
代码中用vis数组判断是否为原矩阵中旋转过来的点。
AC Code:
#include <iostream> #include <stdio.h> #include <string.h> #define MAX_N 4005 using namespace std; int n,k,t; int ans; int a[MAX_N][MAX_N]; int sum[MAX_N][MAX_N]; bool vis[MAX_N][MAX_N]; void read() { memset(a,0,sizeof(a)); memset(vis,false,sizeof(vis)); scanf("%d%d",&n,&k); t=n; int temp; for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { scanf("%d",&temp); a[i+j][n-1-i+j]=temp; vis[i+j][n-1-i+j]=true; } } n=n*2-1; k=k*2-1; } bool is_legal(int x,int y) { return x+y>=t-1 && n-1-x+y>=t-1 && n-1-y+x>=t-1 && 2*n-2-x-y>=t-1 && vis[x][y]; } void cal_sum() { for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { if(i-1>=0) sum[i][j]+=sum[i-1][j]; if(j-1>=0) sum[i][j]+=sum[i][j-1]; if(i-1>=0 && j-1>=0) sum[i][j]-=sum[i-1][j-1]; sum[i][j]+=a[i][j]; } } } int cal_max() { int maxn=0; for(int i=0;i<n && i+k-1<n;i++) { for(int j=0;j<n && j+k-1<n;j++) { if(!is_legal(i,j) || !is_legal(i,j+k-1) || !is_legal(i+k-1,j) || !is_legal(i+k-1,j+k-1)) continue; int now=sum[i+k-1][j+k-1]; if(i-1>=0) now-=sum[i-1][j+k-1]; if(j-1>=0) now-=sum[i+k-1][j-1]; if(i-1>=0 && j-1>=0) now+=sum[i-1][j-1]; maxn=max(maxn,now); } } return maxn; } void solve() { cal_sum(); ans=cal_max(); } void print() { printf("%d\n",ans); } int main() { read(); solve(); print(); }