【AI绘画】Alpha-VLLM 的 Lumina-Next:新一代图像生成器

在这里插入图片描述

简介

Lumina-Next-T2I 是在 Lumina-T2I 成功基础上发展起来的尖端图像生成模型。它采用了带有 2B 参数模型的 Next-DiT 和 Gemma-2B 文本编码器,推理速度更快,生成样式更丰富,并增强了多语言支持。

模型架构

Lumina-Next-T2I 的生成模型建立在 Next-DiT 骨干之上,文本编码器是 Gemma 2B 模型,而 VAE 则使用由 stabilityai 微调的 sdxl 版本。

  • 生成模型: Next-DiT
  • 文本编码器 Gemma-2B
  • VAE: sdxl-vae

新闻和更新

  • 2024 年 5 月 12 日,Lumina-Next-T2I 型号发布,为图像生成提供了更快更低的内存使用率。

安装

  1. 创建 conda 环境并安装 PyTorch
    注意:您可能需要根据驱动程序版本调整 CUDA 版本
conda create -n Lumina_T2X -y
	conda activate Lumina_T2X
	conda install python=3.11 pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=12.1 -c pytorch -c nvidia -y
  1. 安装依赖
pip install diffusers huggingface_hub
pip install flash-attn --no-build-isolation
  1. Diffusers推理
from diffusers import LuminaText2ImgPipeline
import torch

pipeline = LuminaText2ImgPipeline.from_pretrained("/path/to/ckpt/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda")

# or you can download the model using code directly
# pipeline = LuminaText2ImgPipeline.from_pretrained("Alpha-VLLM/Lumina-Next-SFT-diffusers", torch_dtype=torch.bfloat16).to("cuda")

image = pipeline(prompt="Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. "
                        "Background shows an industrial revolution cityscape with smoky skies and tall, metal structures").images[0]

鉴赏效果

在这里插入图片描述

A winter landscape with a frozen lake, snow-covered pine trees, and a small cabin with smoke coming out of the chimney.

在这里插入图片描述

An astronaut standing on a moonlit alien planet, with purple mountains and two large moons in the sky.

在这里插入图片描述

A rustic farmhouse kitchen with a wooden table, a bowl of fresh apples, and a cat curled up on a chair.

在这里插入图片描述

This is the Lumina output, and I wanted to show it because it was cartoony

感谢大家花时间阅读我的文章,你们的支持是我不断前进的动力。点赞并关注,获取最新科技动态,不落伍!🤗🤗🤗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值