题目链接:http://codeforces.com/problemset/problem/509/F
题意:
告诉你遍历一棵树的方法,以及遍历节点的顺序a[i],长度为n。
问你这棵树有多少种可能的形态。
遍历方法:
used[1 ... n] = {0, ..., 0};
procedure dfs(v):
print v;
used[v] = 1;
for i = 1, 2, ..., n:
if (a[v][i] == 1 and used[i] == 0):
dfs(i);
dfs(1);
题解:
表示状态:
dp[i][j] = numbers
表示a[i to j]这些节点,以a[i]为根所能构成的树的方案数。
找出答案:
ans = dp[1][n]
如何转移:
dp[i][j]一定以a[i]为根,且第一个访问的子节点一定是a[i+1]。
所以将dp[i][j]分为三部分:
(1)根节点a[i]
(2)最左边的一棵子树a[i+1 to k]
(3)右边剩下的一堆节点a[k+1 to j]
那么根据乘法原理:
dp[i][j] = ∑ dp[i+1][k]*右边一堆节点的方案数
然而遍历是根据节点编号从小到大访问儿子节点的。
这就要求,对于后面的一堆节点,如果其中某一个a[x]要和a[i+1]在同一层,那么一定要有a[i+1]<a[x]。
又因为对于右边的一堆节点来说,最先访问到的肯定是a[k+1]。
所以就是要保证:a[i+1]<a[k+1] or a[k+1]不存在
这样就不用管后面的节点了,爱咋分咋分……
接下来考虑如何求右边一堆节点的方案数。
a[k+1 to j]形成森林的方法数 = a[k to j]以a[k]为根的子树的方法数。
所以右边一堆节点的方案数 = dp[k][j]
最终就是:
if(a[i+1]<a[k+1] || k==j)
dp[i][j] += dfs(i+1,k)*dfs(k,j);
用记忆搜搞就行。
边界条件:
dp[i][i] = 1
AC Code:
1 #include <iostream> 2 #include <stdio.h> 3 #include <string.h> 4 #define MAX_N 505 5 #define MOD 1000000007 6 7 using namespace std; 8 9 int n; 10 int a[MAX_N]; 11 long long dp[MAX_N][MAX_N]; 12 13 long long dfs(int i,int j) 14 { 15 if(i==j) return 1; 16 if(dp[i][j]!=-1) return dp[i][j]; 17 dp[i][j]=0; 18 for(long long k=i+1;k<=j;k++) 19 { 20 if(a[i+1]<a[k+1] || k==j) 21 { 22 dp[i][j]+=dfs(i+1,k)*dfs(k,j); 23 dp[i][j]%=MOD; 24 } 25 } 26 return dp[i][j]; 27 } 28 29 int main() 30 { 31 cin>>n; 32 for(int i=1;i<=n;i++) cin>>a[i]; 33 memset(dp,-1,sizeof(dp)); 34 cout<<dfs(1,n)<<endl; 35 }