堆土距离, Wasserstein distance 在鲁棒优化中见到一个名词:Wasserstein distance, 又称作 earth mover's distance,堆土距离。用来测量两个随机分布的距离。之所以叫堆土距离,是因为它的物理含义是:将一个随机分布的直方图,变化成另一个随机分布的直方图,直方图变动的最小距离和。直方图中的每个小柱子可以视作一个土堆。
克隆巴赫系数 Cronbach‘s alpha 及 R, Python 实现 克隆巴赫系数 Cronbach’s alpha 是度量问卷信度(Reliability)的一个指标,一般大于 0.7 表示问卷的信度可以接受,大于 0.8 表示问卷的信度良好,大于 0.9 表示问卷的信度优秀。信度即测量的一致性,表示若问卷中的问题重复很多次问同一个人,这个人的回答总是一致的。效度是衡量问卷中的问题能否测量出它应该测量的事物的成都,例如网上的一些 IQ 测试问题真的能反映一个人的真实智力吗?这个就属于效度要衡量的东西。信度的标准定义为真值方差与测量值的方差之比。测量值 xxx 与真值 τ
eclipse 中的 git unauthorized 2022 eclipse 不能与 github 连接,最后决定放弃用 eclipse 进行 push 或 pull ,用 github 自己的 github desktop 软件进行 git 操作比较好
随机对偶动态规划 SDDP,报童模型的一个 python 例子 将 benders 分解与 SAA 方法结合在一起,就产生了随机对偶动态规划方法。这两年在论文里看到了这个方法,一般用在运输或能源规划问题中,在库存管理问题中还没见别人用过。
读了下神书 Introduction to Linear Optimization 这本 MIT 教授 Dimitris Bertsimas 写的神书 《Introduction to Linear Optimization》,早在 2019 年我一个博士同学就推荐过给我。我当时从淘宝买了影印版,读了几页,之后就把这本书遗忘了。后来在 2021 年看到一位 MIT 博士在公众号中推荐了这本运筹学著作,并评这本书为三大神书之一。于是又拿起了这本书,从头开始细看。的确如评价所说,“抽吸剥茧”,将线性规划中的很多原理讲解地明明白白,后悔没有早点读完。这本书比较厚,有 500 多页,目前我才看
两阶段与多阶段随机规划 这段时间发现一本不错的随机规划教材:《Handbooks in Operations Research and Management Science: Stochastic Programming》。这本书比之前看的一些教材更通俗易懂一些。总结一下这几天看到的知识点。1. 两阶段规划two-stage model 中,xxx 为第一阶段的决策变量,必须在不确定性发生之前作出决定,yyy 为第二阶段的决策变量,在不确定性发生之后作出决定。ξ\xiξ 为随机变量,而 www 为随机变量的一个具体表现值。
总结2021 2021年很快就过去了,这一年申请到了国家自科,也录用了一篇领域内还可以的论文,生活也算有点安定。博士毕业工作已 3 年,目前的学术成果中规中矩,仍然有些遗憾与不足。目前单位的科研环境不好,但最大好处是压力不大。在新的一年里,希望自己不忘初心,继续在学术道路上探索,工作与生活都更健康,更有规律一些。...
关于条件方差的一个性质 今天看到关于条件方差的一条性质,记录下来:Var(Y)=E(Var(Y∣X))+Var(E(Y∣X))\text{Var} (Y) = \text{E}(\text{Var}(Y|X))+\text{Var}(\text{E}(Y|X)) Var(Y)=E(Var(Y∣X))+Var(E(Y∣X))而条件均值的性质为:E(Y)=E(E(Y∣X))\text{E}(Y)=\text{E}(\text{E}(Y|X))E(Y)=E(E(Y∣X))...
python Numpy 的一维数组 1D array 既是行向量也是列向量,矩阵相乘符号@ 我发现 Numpy 中的一维数组既可以是行向量也可以是列向量:import numpy as npa = np.array([1, 2, 3, 4])In [18]: a.shape(4,)IPdb [19]: a.T.shape(4,)可以发现,一维数组的转置就是它自身。若在定义数组时,里面有两个中括号,就是一个行向量了。b = np.array([[1, 2, 3 ,4]])In [24]: b.shape(1, 4)但若 numpy 的二维数组与一维数组做矩阵乘法,一维
统计模型评价准则 AIC 统计模型评价时,经常见到一个准则 AIC, 全称是 Akaike information criterion,是以日本的统计学家 Akaike 命名的,它的计算公式为:AIC=2k−ln(L^)AIC=2k-\ln(\hat{L})AIC=2k−ln(L^)其中,kkk 是模型中的待估参数数量, L^\hat{L}L^ 是该模型极大似然估计的最大值。AIC 值越小,说明该统计模型损失的信息越少。...
max-min 不等式(minimax inequality) 在一篇鲁棒优化相关的论文中,看到了 minimax inequality,又称作 max-min 不等式。查了一下,原来在拉格朗日对偶中应用过,写篇博客总结一下。
录用了一篇 IJPR 昨天录用了一篇 IJPR,若是博士毕业之前能发 IJPR,不知有多高兴啊。这篇文章从投到录将近一年:一审两个半月,大修,状态是:Major Revision but allow Resubmission二审一个月多点,小修,让修改一些语句三审花了四个多月,又是小修,原来这个小修又发给原审稿人了,而审稿人似乎暑假度假了,特别慢,又修改了几句话三审一个月,小修,领域编辑让补充了一些数据说明之类的话四审/五审,半个多月,小修/录用,主编那里让引用几篇期刊的新论文,领域编辑让稍微扩充一下论文结论读
内卷的国内学术圈 1024 最近浏览了一下国内一些高校相近研究领域的青年教师,发现大家的科研成果水平越来越高了,不禁感叹学术圈越来越内卷。一些普通211高校的新入职教师,可能要有 utd 顶刊才能留下来一些普通一本学校的新入职教师,科研成果或许比10年前一些985高校教授的成果都好觉得自己论文写的太慢,但也不想那么急功近利,可是还得有好成果啊。读博期间要是能发一篇领域内中上等的期刊,不知道要多高兴。但是现在,似乎没有那么振奋人心(仅仅才过了三年),可能有 utd 才会特别高兴些。。。搞科研,最主要还得靠自己,最起码一个科
指示约束条件 (indicator constraint) 与大M (big M) 条件 数学规划软件 cplex 或 gurobi 都有专门的指示约束条件:约束一个变量与另外一些变量的关系,例如对于一个 0-1 变量 zzz,它与 xxx 有以下关系:x>0⇒z=1x=0⇒z=0\begin{aligned}x>0 \Rightarrow z=1\\x=0\Rightarrow z=0\end{aligned}x>0⇒z=1x=0⇒z=0一般情况下可以使用大 M 构造成线性规划模型:x≤Mzx≥0\begin{aligned}x &\leq Mz
无限阶段平稳马尔科夫过程的求解算法:策略迭代与值迭代 无限阶段的马尔科夫决策过程,相关论文一般比较难,初步总结一下知识点。若无限阶段的马尔科夫过程为平稳的,那么各阶段的状态转移概率与回报函数都是相同的,这样**马尔科夫过程最终会达到一个平稳的状态**。(在库存问题中,平稳过程意味着各阶段的随机需求函数相同,收益与成本参数也相同)
大致看了下伍德里奇的《计量经济学导论》 我的研究方向也有不少做实证研究的,而计量经济学是实证研究的重要武器,因此,在 8 月份时看了这本经典的计量经济学教材。的确比不少国内教材好,优点是比较详细,很多知识点讲解地很清楚看到第10章之后,略微有点吃力了。因为看的速度太快,没有完全消化,很多知识点需要再看一遍这本书有很多例子和课后题,配合一些计量软件练习,应该能学地更好,stata 是做计量最好的软件,有必要学一学...
仿射包(affine hull) 与凸包(convex hull) 一个集合的仿射包,是集合内元素的所有仿射组合;一个集合的凸包,是集合内元素的所有凸组合。对于一个集合 SSS,假设它有 kkk 个点,每个点为 xix_ixi,则仿射包可以定义为:{∑i=1kaixi∣xi∈S,∑i=1kai=1,ai∈R}\{\sum_{i=1}^k a_ix_i|x_i\in S, \sum_{i=1}^k a_i=1,a_i\in\mathbb{R}\}{i=1∑kaixi∣xi∈S,i=1∑kai=1,ai∈R}若要求 ai≥0a_i\geq0ai≥0
霍夫丁不等式 Hoeffding inequality 霍夫丁不等式是描述:一组相互独立并且有界的变量偏离其均值的和大于一定值的概率具有一个上界。该不等式最初是研究二项分布的性质。假设有一组相互独立的随机变量 X1,X2,…,XnX_1, X_2, \dots, X_nX1,X2,…,Xn,每个随机变量的波动区间为 [ai,bi][a_i, b_i][ai,bi],i=1,2,…,ni=1, 2,\dots,ni=1,2,…,n。令 X‾=1n(X1+X2+⋯+Xn)\overline{X}=\frac{1}{n}(X_1+X_2+\dots+X_