BZOJ 1492 [NOI2007]货币兑换Cash:斜率优化dp + cdq分治

传送门

题意

初始时你有 $ s $ 元,接下来有 $ n $ 天。

在第 $ i $ 天,A券的价值为 $ A[i] $ ,B券的价值为 $ B[i] $ 。

在第 $ i $ 天,你可以进行两种操作:

  • 卖出:将 $ %OP $ 的A券和 $ %OP $ 的B券兑换成人民币,其中 $ OP $ 为 $ [0,100] $ 之间的任意实数
  • 买入:支付 $ IP $ 元,买入A、B券的总价值为 $ IP $ 元,且买入A、B券的数量之比为 $ Rate[i] $

人民币和金券的数量可以为一个实数。一天可以进行多次操作。

问你 $ n $ 天后最多能获得多少元钱。

$ (n \leq 10^5, 0 \leq A[i],B[i] \leq 10, 0 \leq Rate[i] \leq 100, ans \leq 10^9) $

题解

首先有一个显然的结论:必定有一种最优方案,满足每一天至多进行一种操作。

设 $ f[i] $ 表示在第 $ i $ 天能够获得的最大钱数,$ x[i], y[i] $ 分别表示第 $ i $ 天能够获得A、B券的最大数量。

则有:
\[ x[i] = \frac{f[i]}{A[i]+B[i]/Rate[i]} \]

\[ y[i] = \frac{f[i]}{A[i]*Rate[i]+B[i]} \]

然后考虑 $ f[i] $ 如何转移。

对于第 $ i $ 天来说,要么什么都不做,要么将之前某一天的金券在这一天卖掉。

所以:
\[ f[i] = max(f[i-1], x[j]*A[i]+y[j]*B[i]) \quad (1 \leq j<i) \]
然而朴素dp是 $ O(n^2) $ 的过不了……

先让所有的 $ f[i] = max(f[i],f[i-1]) $

那么剩下的就是 $ f[i] = max(x[j] \ast A[i]+y[j] \ast B[i]) \quad (1 \leq j<i) $

变形得:
\[ y[j] = -\frac{A[i]}{B[i]}*x[j] + \frac{f[i]}{B[i]} \]
上式是一条斜率为 $ -\dfrac{A[i]}{B[i]} ​$ 且过点 $ (x[j], y[j]) ​$ 的直线的斜截式。

由于我们想让 $ f[i] $ 最大,并且因为 $ B[i] \geq 0 $ ,所以只要让上式的截距 $ \dfrac{f[i]}{B[i]} $ 最大即可。

我们考虑用cdq转移dp。

首先对于当前区间,按照 $ id $ 大小分成两个区间。$ id $ 小的在左区间,否则在右区间,且分别在左右区间中 $ id $ 大小递增(满足了 $ id $ 小的更新 $ id $ 大的的答案)。

假设左边递归处理后是以 $ x,y $ 分别为第一和第二关键字从小到大排好序的,右边提前按照斜率 $ -\dfrac{A[i]}{B[i]} $ 从大到小排好序的。

对于左区间,我们可以先for循环扫一遍左区间求出一个上凸壳。

那么右区间每个元素的答案,一定是取它与左边凸壳相切时的截距(因为要让截距最大)。

并且在依次求出右区间答案时,切点是不断向右移动的(因为右区间中元素的斜率不断减小)。

所以总复杂度就降为了 $ O(nlogn) $

AC Code

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define MAX_N 100005
#define INF_LF 1e13
#define EPS 1e-8

using namespace std;

struct Data
{
    double a,b,r,x,y,k;
    int id;
    friend bool operator < (const Data &a,const Data &b)
    {
        return a.k>b.k;
    }
};

int n;
double f[MAX_N];
Data t[MAX_N];
Data c[MAX_N];
Data tmp[MAX_N];

inline double fabs(double x)
{
    return x>0 ? x : -x;
}

inline bool eq(double x,double y)
{
    return fabs(x-y)<=EPS;
}

inline double slope(Data a,Data b)
{
    if(eq(a.x,b.x)) return INF_LF;
    return (a.y-b.y)/(a.x-b.x);
}

inline bool cmp(Data a,Data b)
{
    if(a.x!=b.x) return a.x<b.x;
    return a.y<b.y;
}

void read()
{
    scanf("%d%lf",&n,&f[1]);
    for(int i=1;i<=n;i++)
    {
        scanf("%lf%lf%lf",&t[i].a,&t[i].b,&t[i].r);
        t[i].k=(eq(t[i].b,0) ? -INF_LF : -t[i].a/t[i].b);
        t[i].id=i;
    }
}

void cdq(int l,int r)
{
    if(l==r)
    {
        int id=t[l].id;
        f[id]=max(f[id],f[id-1]);
        t[l].x=f[id]/(t[l].a+t[l].b/t[l].r);
        t[l].y=f[id]/(t[l].a*t[l].r+t[l].b);
        return;
    }
    int mid=(l+r)>>1,tot=0;
    for(int i=l,j=mid+1,k=l;k<=r;k++)
    {
        if(t[k].id<=mid) tmp[i++]=t[k];
        else tmp[j++]=t[k];
    }
    for(int i=l;i<=r;i++) t[i]=tmp[i];
    cdq(l,mid);
    for(int i=l;i<=mid;i++)
    {
        while(tot>=2 && slope(c[tot-1],c[tot])<slope(c[tot],t[i])) tot--;
        c[++tot]=t[i];
    }
    int p=1;
    for(int i=mid+1;i<=r;i++)
    {
        while(p<tot && slope(c[p],c[p+1])>t[i].k) p++;
        f[t[i].id]=max(f[t[i].id],c[p].x*t[i].a+c[p].y*t[i].b);
    }
    cdq(mid+1,r);
    for(int i=l,j=mid+1,k=l;k<=r;k++)
    {
        if((i<=mid && cmp(t[i],t[j])) || j>r) tmp[k]=t[i++];
        else tmp[k]=t[j++];
    }
    for(int i=l;i<=r;i++) t[i]=tmp[i];
}

void work()
{
    sort(t+1,t+1+n);
    cdq(1,n);
    printf("%.3f\n",f[n]);
}

int main()
{
    read();
    work();
}

转载于:https://www.cnblogs.com/Leohh/p/9096499.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值