题目描述
某列火车从 1 号城市出发,前往编号为 𝐶 的城市。该火车有 𝑆 个座位,现在有 𝑅 个车票订购需求。
一个订购由 𝑂,𝐷,𝑁 三个整数组成,表示从起点站 𝑂 到目标站 𝐷 需要订购 𝑁 个座位。
如果在该订购范围内有能满足的空座位,就称该订购可以被满足,否则就不可以。
请你按订购给出顺序处理,判断是否可以满足该订购需求。
输入格式
第一行为三个整数 𝐶,𝑆,𝑅。
接下来 𝑅 行,每行为三个整数 𝑂,𝐷,𝑁,分别表示每一个预定。
输出格式
对第 𝑖 个预定,如果能满足,输出 T
,否则输出 N
。
输入输出样例
输入 #1
4 6 4
1 4 2
1 3 2
2 4 3
1 2 3
输出 #1
T
T
N
N
说明/提示
数据范围:1≤𝐶,𝑆,𝑅≤60000。
参考代码:(线段树求取区间最值)
【这题有个坑:终点站不算,修改区间是要写成 ( 终点站-1 ) ,毕竟终点站就下了,座位也就空出来了】
#include<bits/stdc++.h>
#define int long long
const int N=4e5+5;
using namespace std;
struct node{
int zhi,l,r;
}w[N];
int n,m,k,a,b,a1[N],lazy1[N],lazy2[N],p,c;
void build(int k,int l,int r)//创建线段树
{
w[k].l=l;w[k].r=r;//保存此时线段的左端点与右端点
if(l==r)//当为叶子节点
{
w[k].zhi=a1[l];//赋值
return;//退出
}
int mid=l+r>>1;//找中间点
build(k*2,l,mid);//建立左子树
build(k*2+1,mid+1,r);//建立右子树
w[k].zhi=max(w[k*2].zhi,w[k*2+1].zhi);//求取区间最值
}
void biao(int k,int v)//lazy标志的下传
{
lazy1[k]+=v;//下传lazy标志
w[k].zhi+=v;//k这区间所有所加v,那么最大值不就是原数加v
return;
}
void xiaochuan(int k)
{
if(lazy1[k]==0)return;//没有就跳过
biao(k*2,lazy1[k]);//下传lazy给左子树
biao(k*2+1,lazy1[k]);//下传lazy给右子树
lazy1[k]=0;//lazy下传后清零
}
void jia(int k,int l,int r,int v)//区间修改 (l为要求区间的左端点,r为要求区间的右端点)
{
if(l<=w[k].l&&r>=w[k].r)//满足当前区间被所求区间包含
{
biao(k,v);return;//将值计算后不管
}
int mid=w[k].l+w[k].r>>1;
xiaochuan(k);//此时需要下传lazy标志
if(l<=mid)//当要求区间包括左子树
jia(k*2,l,r,v);//向下找左子树
if(r>=mid+1)//当要求区间包括右子树
jia(k*2+1,l,r,v);//向下找右子树
w[k].zhi=max(w[k*2].zhi,w[k*2+1].zhi);//修改区间最值
}
int qiu(int k,int yl,int yr)
{
if(yl<=w[k].l&&yr>=w[k].r)return w[k].zhi;//满足当前区间被所求区间包含
int mid=w[k].l+w[k].r>>1;
int ans=0;
xiaochuan(k);//下传lazy标志
if(mid>=yl)//当要求区间包括左子树
ans=max(ans,qiu(k*2,yl,yr));//求取左子树的最值
if(mid+1<=yr)//当要求区间包括右子树
ans=max(ans,qiu(k*2+1,yl,yr));//求取右子树的最值
return ans;
}
signed main()
{
ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
cin>>n>>p>>m;
build(1,1,n);//建线段树
for(int i=1;i<=m;i++)
{
cin>>a>>b>>k;
int gh=qiu(1,a,b-1);//求取当前区间的最值
//cout<<gh<<'\n';
if(gh+k>p) cout<<"N"<<'\n';
else //只要区间剩余座位满足就行
{
cout<<"T"<<'\n';
jia(1,a,b-1,k);
}
}
// for(int i=1;i<=15;i++)
// cout<<i<<" "<<lazy1[i]<<" "<<lazy2[i]<<'\n';
return 0;
}