题目链接
题意
给出 n × m n×m n×m的数字,每行选择一个,求最后选择的数字总和与给出的target相差最小。
思路
这是昨天牛客的一道题,刚开始拿到这一题的时候就想到用dp的方法,之前写过用dp的方法求怎么选使总和最大,最大是多少。但是这一题让求相差最小是多少,就没有思路了。今天开题解发现有两种方法,一种是bitset(bitset可以快速把各个种类算出来),另一种是dp
bitset方法
关于bitset是看了高老师的博客才更加理解的https://blog.csdn.net/2301_81692739/article/details/140585703?spm=1001.2014.3001.5502
对于这种很多种选择的方法的,bitset就可以很快的把所有方法都整理起来,非常好用。
bitset的核心步骤
bitset<N> b, t;
b.set(0);
for(int i = 1; i <= n; i ++ ) {
t.reset();
for(int j = 1; j <= m; j ++ ) {
int x; cin >> x;
t |= (b << x);
}
b = t;
}
处理完成之后,我们把bitsetb输出100位看下是0000000000000001001001001001001001000000
我们可以发现第i位出现的1就代表这个数组能有某种选择的方法让总和变成i,我们数一下可以发现,一共是出现了7个1,所以,这个样例一共就只有7种不同的选择结果
我们就可以通过从target开始向两边遍历,只要在b中发现1就可以停止并且输出答案target-i
或者j-target
下面看下代码
void Solved() {
int n, m; cin >> n >> m;
bitset<N> b, t;
b.set(0);
for(int i = 1; i <= n; i ++ ) {
t.reset();
for(int j = 1; j <= m; j ++ ) {
int x; cin >> x;
t |= (b << x);
}
b = t;
}
// cout<<b;
int target; cin >> target;
int res = target;
for(int i = target, j = target;i>=0||j <= n*50; i --, j ++ ) {
if(i >= 0 && b[i] == 1) {
res = target - i; break;
}
if(b[j] == 1) {
res = j - target; break;
}
}
cout << res << endl;
}
注意这里的边界
for(int i = target, j = target;i>=0||j <= n*50; i --, j ++ )
因为无论怎么选,数据怎么出,总和最大就一定是n*50。
注意i>=0||j <= n*50,这里要用||,因为只要有一种满足情况的就可以
总的来说,这种题应该首先想到的就是这一种方法,利用bitset的特性,将所有的选择方式都能展现出来
分组背包方法
关于这种方法,昨天我就略有想法💡了,但是没有深入的去思考🤔,其实也很简单,就是定义一个二维数组dp[i][j]表示:
在选前i个,总和不超过j的最大值
也是用到了分组背包的想法,但好在这一题的范围不是很大,可以过去,如果范围再大一点,估计就不好说了。
我们把dp的值通过处理得到,最后我们可以从可以选择的最低标准开始遍历到最大值5000,遍历找出最小的差值。因为最后的循环只有5000次,所以可行。
可以选择的最低标准 : 每一组选择最小的一个的选择方法。
下面来看代码
void solve () {
int n,m;cin>>n>>m;int sum=0;
for (int i=1;i<=n;i++) {
int ma=INT_MAX;
for (int j=1;j<=m;j++) {
cin>>a[i][j];
if (a[i][j]<ma) ma=a[i][j];
}
sum+=ma;
}
for (int i=1;i<=n;i++) {
for (int k=5000;k>=0;k--) {
for (int j=1;j<=m;j++) {
if (a[i][j]<=k) {
dp[i][k]=max(dp[i][k],dp[i-1][k-a[i][j]]+a[i][j]);
}
}
}
}
int t;cin>>t;
// for (int i=1;i<=10;i++) cout<<dp[n][i]<<' ';
int ans=INT_MAX;
for (int i=sum;i<=5000;i++) {
ans=min(abs(t-dp[n][i]),ans);
}
cout<<ans;
}