Codeforces 834(#426 Div.2) C.The Meaningless Game

 

C. The Meaningless Game

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Slastyona and her loyal dog Pushok are playing a meaningless game that is indeed very interesting.

The game consists of multiple rounds. Its rules are very simple: in each round, a natural number k is chosen. Then, the one who says (or barks) it faster than the other wins the round. After that, the winner's score is multiplied by k2, and the loser's score is multiplied by k. In the beginning of the game, both Slastyona and Pushok have scores equal to one.

Unfortunately, Slastyona had lost her notepad where the history of all n games was recorded. She managed to recall the final results for each games, though, but all of her memories of them are vague. Help Slastyona verify their correctness, or, to put it another way, for each given pair of scores determine whether it was possible for a game to finish with such result or not.

Input

In the first string, the number of games n (1 ≤ n ≤ 350000) is given.

Each game is represented by a pair of scores ab (1 ≤ a, b ≤ 109) – the results of Slastyona and Pushok, correspondingly.

Output

For each pair of scores, answer "Yes" if it's possible for a game to finish with given score, and "No" otherwise.

You can output each letter in arbitrary case (upper or lower).

Example

input

6
2 4
75 45
8 8
16 16
247 994
1000000000 1000000

output

Yes
Yes
Yes
No
No
Yes

Note

First game might have been consisted of one round, in which the number 2 would have been chosen and Pushok would have won.

The second game needs exactly two rounds to finish with such result: in the first one, Slastyona would have said the number 5, and in the second one, Pushok would have barked the number 3.

 

 

 

题意:

有n(1<=n<=350000)场游戏,对于每场游戏有若干个回合组成,两个人的初始分均为1,每个回合赢的人当前分数乘上k^2,输的人当前分数乘上k(每一回合的k都是不同的)。给你两个数a,b(1<=a,b<=10^9)问你这两个数是否为他们最终的分数?

思路:

我们先计算a*b,那么考虑a*b=(k_1^3)*(k_2^3)*...*(k_i^3),即a*b为立方数的乘积组成,我们可以二分找出满足a*b=mid^3,我们判断mid是否等于k_1*k_2*...*k_i。

当且仅当存在a*b=mid^3,a%mid=0,b%mid=0,那么a,b就为他们最终的分数,反之不是。

示例程序

 

#include <cstdio>
using namespace std;
int main()
{
    long long a,b,n,l,r,mid,t,sum;
    scanf("%lld",&n);
    while(n--)
    {
        scanf("%lld %lld",&a,&b);
        l=1;
        r=1000000;
        sum=a*b;
        while(l<=r)
        {
            mid=(l+r)/2;
            t=mid*mid*mid;
            if(t>sum)
            {
                r=mid-1;
            }
            else if(t<sum)
            {
                l=mid+1;
            }
            else
            {
                break;
            }
        }
        if(l<=r&&a%mid==0&&b%mid==0)
        {
            printf("Yes\n");
        }
        else
        {
            printf("No\n");
        }
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值