每日一题(分糖果)

Solo和koko是两兄弟,妈妈给了他们一大袋糖,每块糖上都有自己的重量。现在他们想要将这些糖分成两堆。分糖的任务当然落到了大哥Solo的身上,然而koko要求必须两个人获得的糖的总重量“相等”(根据Koko的逻辑),要不然就会哭的。非常不幸的是,koko还非常小,并且他只会先将两个数转成二进制再进行加法,而且总会忘记进位。

如当12(1100)加5(101)时:

1100

+ 0101

————

1001

于是koko得到的计算结果是9(1001)。

此外还有一些例子:

5 + 4 = 1

7 + 9 = 14

50 + 10 = 56

现在Solo非常贪婪,他想要尽可能使自己得到的糖的总重量最大,且不让koko哭。

输入描述

输入的第一行是一个整数N(2 ≤ N ≤ 15),表示有袋中多少块糖。

第二行包含N个用空格分开的整数Weighti (1 ≤ Weighti ≤ 10^6),表示第i块糖的重量。

输出描述

如果能让koko不哭,输出Solo所能获得的糖的总重量,否则输出“NO”。

样例

输入:

3
3 5 6

输出:

11

代码:

package com.ceshi;
import java.util.Scanner;

public class Main {

    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        int n = scan.nextInt();
        int[] array = new int[n];
        for (int i = 0; i < n; i++)
            array[i] = scan.nextInt();
        int s = 0, mi = 1000010, sum = 0;
        for (int i = 0; i < n; i++) {
            int t = array[i];
            s ^= t; 
            mi = Math.min(mi, t); 
            sum += t; 
        }
        if (s != 0) {
            System.out.println("NO"); // 无解
        } else {
            System.out.println(sum - mi); // 除了最小值的其余数的和
        }
    }
}

### 关于蓝桥杯 DFS 糖果问题 #### 题目描述 有两种类型的糖果别有 9 个和 16 个。需要将这些糖果配给 7 个小朋友,每个小朋友获得的糖果总数介于 2 和 5 之间(含边界),并且所有的糖果必须被完全完。如果有任意一个小朋友在两种方案中的糖果同,则认为这两种方案是同的。 目标是求出满足上述条件的配方法数目[^3]。 --- #### 解题思路 此问题可以通过 **深度优先搜索 (DFS)** 来解决。以下是具体析: 1. 定义 `dfs` 函数接收三个参数: - `depth`: 当前正在处理的小朋友编号(从 0 开始计数)。 - `n`: 剩余的第一种糖果数量。 - `m`: 剩余的第二种糖果数量。 2. 终止条件: - 如果已经处理到最后一位小朋友 (`depth == 7`) 并且剩余糖果均为零 (`n == 0 and m == 0`),则找到一种合法配方式,结果变量 `ans` 加 1。 - 否则,如果没有到达最后一位小朋友或者仍有剩余糖果配完毕,则继续尝试其他可能性。 3. 枚举每一步的选择: 对于每一位小朋友,可以别枚举他们能拿到的第一种糖果数量 `i` 和第二种糖果数量 `j`,其中约束条件为: \[ i + j \in [2, 5],\quad n >= i,\quad m >= j. \] 4. 更新状态并递归调用: 每次选定一组 `(i, j)` 后,更新剩余糖果数量,并进入下一层递归,直到完成所有小朋友的配为止[^2]。 --- #### 实现代码 下面是基于以上逻辑编写的 Python 实现代码: ```python def dfs(depth, n, m): global ans if depth == 7: # 已经配完了所有小朋友 if n == 0 and m == 0: ans += 1 return for i in range(0, min(n, 5) + 1): # 枚举第一种糖果的数量 for j in range(0, min(m, 5) + 1): # 枚举第二种糖果的数量 if 2 <= i + j <= 5: # 符合每人至少拿两个糖果的要求 dfs(depth + 1, n - i, m - j) # 初始化全局变量 ans = 0 dfs(0, 9, 16) print(ans) ``` 这段程序的核心在于通过双重循环来穷尽所有可能的情况,并利用递归来逐步减少待解决问题的空间大小。 --- #### 结果解释 运行上述代码后会得出最终答案是一个整数值,代表符合条件的所有配方案总数量。注意提交时只需提供该数字本身而无需附加任何额外说明文字。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值