几种常见的查找

/*1.顺序查找
复杂性:O(n)
缺点:效率低,尤其是线性表的n很大时
优点:适用于顺序表和单链表,对元素排列次序没有要求。为新的元素插入提供了方便,不需要寻找插入位置
改进:
在已知各元素的查找概率不等的情况下,将元素按照从大到小进行排序
事先不知道各元素查找概率的情况下,每次查找一个元素,将它与前驱元素对调位置,使概率大的元素自然逐渐前移动
*/

/*数组前N个元素查找值为v的节点,查找成功返回数组下标,查找失败返回-1*/
int search(int *a,int n,v)
{
    int i=0;
    for(i=0;a[i]!=v&&i<n;i++);
    if(i==n)
        return -1;
    else
        return i;
}
/*head为链表的表头指针,v是要给定的查找的定值,查找成功返回地址,不成功返回NULL*/
typedef struct Link
{
    int data;
    struct Link *Next;
}Link;
Link* search_link(int v,Link *head)
{
    Link *p;
    p=head;
    if(p!=NULL&&p->data!=v)
    {
        p=p->Next;
    }
    return p;
}

/*2.二分查找
  
优点:效率高
缺点:不适合链存储,必须有序存储,关键字要按照值不减或者不增的次序
复杂度:O(log2N)
*/
/*递增数组前N个元素查找值为v的节点,查找成功返回数组下标,查找失败返回-1*/
int bin_search(int *a,int v,int n)
{
   int low=0,high=n-1,mid,i;
   while(low<high)
   {
       mid=(low+high)/2;
       if(a[mid]==v)
       {
           return mid;
       }
       else if(a[mid]>v)
       {
          high=mid-1;
       }
       else
       {
           low=mid+1;
       }
   }
   return -1;
}
/*3.分块查找,对应分块存储*/
/*分两步进行,先查找结点属于哪一个块,在索引表里面查找的,数序递增可以二分法,块内可以顺序查找*/
/*a为顺序存储的线性表,idx是索引表,v是给定的值。m是总块数*/
 typedef struct 
{
    int key;//索引表项结构
    int start;//块起始位置
    int len;//节点长度
}IDX ;
int blk_search(int *a,IDX *idx,int v,int m)
{
    int low=0,high=m-1,mid,i,h;
    while(low<=high)//二分法找块
    {
        mid=(high+low)/2;
        if(v<idx[mid].key)
            high=mid-1;
        else if(v>idx[mid].key)
        {
            low=mid+1;
        }
        else
        {
            low=mid;
            break;
        }
    }
    if(low>=m)
    {
        return -1;//超过索引表的最大值
    }
    i=idx[low].start;//确定块的起始位置
    h=i+idx[low].len;
    while(i<h&&a[i]!=v)
    {
        i++;
    }
    if(a[i]!=v)
    {
        i=-1;
    }
    return i;
}
/*散列查找*/
/*用构造散列表时使用的函数对给定值进行运算,求得地址,用该地址存放的值与给定值比较,相同则成功,否则
  按照构造散列表时解决冲突的方法到相应地址查找*/
/*实现开放定址法解决冲突的散列表的查找功能,其中参数v为要查找的值,t为散列表,大小是M,空位置用0表示。查找成功返回
  位置,失败返回-1,*/
int hash_search(int v,int *t)
{
    int addr,i;
    addr=h(v);//计算哈希函数
    for(i=0;i<M&&t[(addr+i)%M]!=0;i++)
    {
        if(t[(addr+i)%M]==v)
        {
            return ((addr+i)%M);
        }
    }
    return -1;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值