FZU1759 Super A^B mod C
- 板子题,(1<=A,C<=1000000000,1<=B<=10^1000000),求 (A^B)modC 的值
- 欧拉降幂,sqrt(c)求欧拉函数,还用到了快速幂
- 欧拉降幂就是左边这个公式了
- 如果AC互质的话直接用欧拉定理这个公式降幂
- 代码
1 #include <cstdio> 2 #include <iostream> 3 #include <algorithm> 4 #include <cstring> 5 #include <cmath> 6 #define nmax 1000010 7 8 using namespace std; 9 typedef long long ll; 10 char b[nmax]; 11 ll a,c,cc; 12 13 ll gcd(ll x,ll y){ 14 if(y==0) return x; 15 else return gcd(y,x%y); 16 } 17 18 ll phi(ll x){ 19 ll t=sqrt(x),ans=1,t2=x; 20 for (ll i=2; i<=t; i++) { 21 if(x%i) continue; 22 t2/=i; 23 ans*=(i-1); 24 while(x%i==0) x/=i; 25 if(x==1) break; 26 } 27 if(x>1) { ans*=(x-1); t2/=x; } //有个因数大于sqrt 28 ans*=t2; 29 return ans; 30 } 31 32 ll quickpow(ll x,ll y){ //x^y%c 33 if(y==0) return 1; 34 if(y==1) return x%c; 35 ll t=quickpow(x,y/2); 36 if(y%2) return (t*t%c)*x%c; 37 else return t*t%c; 38 } 39 40 int main(){ 41 while( scanf("%I64d%s%I64d",&a,b,&c)!=EOF){ 42 ll d=gcd( max(a,c),min(a,c) ); 43 cc=phi(c); 44 int l=strlen(b); 45 ll t=0;//t==b%phi(c) 46 for (int i=0; i<l; i++) { 47 t*=10; 48 t+=(b[i]-'0')%cc; 49 t%=cc; 50 } 51 if(d==1) printf("%I64d\n",quickpow(a,t));//a^(b%phi(c))modc 52 else{ 53 if(l<=10) { 54 ll nb=0; 55 for (int i=0; i<l; i++) { nb*=10; nb+=(b[i]-'0'); } 56 printf("%I64d\n",quickpow(a,nb)); 57 }else{ //a^(b%phi(c)+phi(c))modc 58 printf("%I64d\n",quickpow(a,t+cc)); 59 } 60 } 61 } 62 return 0; 63 }
- 这题提交之后编译错误不给提示。。。看看评论吧https://vjudge.net/problem/FZU-1759
BZOJ3884: 上帝与集合的正确用法
- 跟上面一题差不多用欧拉公式降幂,只是这题可以吧2^k提出来所以如果用上题表达的话在降幂的时候AC一定互质
- ORZ出题大佬http://blog.csdn.net/popoqqq/article/details/43951401
- 然后本来我是根号n算的欧拉函数结果TLE了???于是乖乖欧拉筛
- 求欧拉函数的时候最外面那层循环还是到1e7吧,,,不到的话后面的质数phi都是0 了
- 代码:
1 #include <bits/stdc++.h> 2 #define nmax 1e7+5 3 4 using namespace std; 5 typedef long long ll; 6 ll in; 7 int cp=-1; 8 int table[10000005]={0},pri[10000005],phi[10000005]; 9 10 ll getphi(){ 11 for (int i=2; i<=1e7; i++) { 12 if(!table[i]) { pri[++cp]=i; phi[i]=i-1; } 13 for (int j=0; j<=cp; j++) { 14 int t=pri[j]*i; 15 if(t>1e7) break; 16 table[t]=1; 17 if(i%pri[j]==0) { phi[t]=phi[i]*pri[j]; break;} 18 phi[t]=phi[i]*(pri[j]-1); 19 } 20 } 21 } 22 23 inline ll mypow(ll x,ll m){ //(2^x)modm 24 if(x==0) return 1; 25 if(x==1) return 2; 26 ll t=mypow(x/2,m); 27 if(x%2) return (t*t<<1)%m; 28 else return t*t%m; 29 } 30 31 inline ll f(ll p){//2^(inf)%p 2^k*(2^(2^inf-k)%p) 32 if(p==1) return 0; 33 int k=0; 34 ll tp=p; 35 while(!(tp&1)) { tp>>=1; k++; } 36 ll x=f(phi[tp]); 37 ll re=( (x-k) + abs(x-k)*phi[p] )%phi[p]; //防止x-k<0 38 return (1<<k)*mypow(re,p)%p; 39 } 40 41 int main(){ 42 getphi(); 43 phi[1]=1; 44 int t; 45 cin>>t; 46 while(t--){ 47 scanf("%lld",&in); 48 printf("%lld\n",f(in)); 49 } 50 return 0; 51 }