python自动下载网页文件

各位朋友们,小编在这里要分享,python登录网站自动下载文件 python自动下载网页中的文件,一起体验不同地域的风土人情,拓宽视野!

本篇文章给大家谈谈python学到什么程度可以做量化考核,以及学量化投资和python能小猫吗?,希望对各位有所帮助,不要忘了收藏本站喔PHP,我学习路上的那盏灯

原标题:【合辑·收藏】Python量化从入门到精通

引言

自2018年9月27日发第一篇推文以来,公众号“Python金融量化”专注于分享Python在金融量化领域的实战应用,坚持走原创路线,持续输出技术干货,已发表29篇原创文章,关注者从零到破万。这一路走来充满了成长的彷徨和喜悦,在此非常感谢大家的一路支持!学习是一个循序渐进的过程,只有通过不断的总结才能形成系统的知识框架python中turtle画蝴蝶。今天将已发送的推文进行一次梳理和总结,归纳出Python应用于金融量化中的学习路线图,从零基础开始,由浅入深,搭建Python量化投资知识框架体系,希望对大家的学习和实战应用有一定的启示。

原文参见:【合辑·收藏】Python量化从入门到精通

01

Python编程基础

关于Python的入门和基础这一块,公众号分享了两篇文章,着重介绍了零基础该如何建立自己的学习路线图,并分享了相关入门小猫,具体见以下推文:

(1)【Python金融量化】零基础如何开始学?

结合个人经验分享下Python做金融量化和数据分析的学习路径。

(2)【资料分享】Python量化从入门到高阶

分享Python从入门、进阶、到高阶的小猫,以及金融投资相关书籍(PDF)。

Python安装与使用

建议安装Anaconda,自带Jupyter notebook和Spyder。Jupyter在交互式编程与数据分析上功能十分强大,公众号上所有文章基本上都是基于Jupyter写的。公众号里回复“Python入门”即可获取相关资料。

Python语言基础

python入门该从哪入手?目前网上小猫汗牛充栋,大同小异, 基本上围绕以下六个方面:

数值类型(整数、浮点数、布尔型、复数)

字符串(str)及其操作

列表(list)、元组(tuple)、字典(dict)、集合(set)

条件、循环语句

函数

常用内置模块:os、math、time、datetime等

02

Python金融量化常用库

Numpy(数组矩阵)、Pandas(数据处理分析)、Scipy(数理统计)、Statsmodel(数理模型)和Matplotlib(可视化)等是综合应用Python做量化分析必学的轮子(module)。当然,如果要把这些库都从头到尾都学一遍,时间精力上估计也不够。因此,建议“干中学”,以解决学习或工作中的实际问题为指导原则,通过实际应用来学习巩固。

1、矩阵与科学计算:Numpy

【手把手教你】玩转Python量化金融工具之NumPy

2、金融数据处理与分析:Pandas

【手把手教你】玩转Python金融量化利器之Pandas

3、数理模型:Scipy与Statsmodel

这一块目前还没发文,后续推文将会涉及。

4、数据可视化:综合运用Matplotlib与pyecharts

(1)【Python金融量化】A股沉浮启示录

(2)2018你不可不知的十大关键词

03

Python金融基础分析实例

本部分是结合金融量化基础,以金融场景真实数据,综合应用numpy、pandas、matplotlib、tushare等,实现数据分析和可视化,包括货币时间价值、复利计算、文本分析、金融图谱和宏观量化等。

1、金融量化分析基础:货币时间价值与复利计算

(1)【手把手教你】Python金融财务分析

(2)【手把手教你】时间序列之日期处理

2、财经数据获取与可视化

【手把手教你】Python获取财经数据和可视化分析

3、上市公司数据挖掘与分析

【Python金融量化】上市公司知多少?

4、文本信息挖掘:财经新闻文本分析

(1)【Python金融量化】财经新闻文本分析

(2)【文本挖掘】Python带你笑看江湖

5、金融知识图谱

【手把手教你】用Python构建小型金融知识图谱

6、宏观分析与量化

(1)大势观澜与研判逻辑

(2)【宏观量化】股市趋势与拐点如何看?

04

Python股票量化初探

本部分主要主要介绍了股票市场分析的量化基础,包括数据获取、量化选股、股票分析入门、量化选股、指数定投和日历效应,体现了Pandas的高级运用和数据可视化分析。

1、获取股票交易数据

【手把手教你】Python获取交易数据

2、股票分析入门

【Python量化】股票分析入门

2、Python量化选股

Python量化选股初探

3、Python分析指数基金定投

(1)Python数说指数定投策略

(2)【Python量化】怎么在基金定投上实现收益最大化

4、Python验证A股月份效应

A股指数图谱:是否有月份效应?

05

Python量化投资专题

本部分围绕量化投资专题展开,从数据库交互使用、量化策略风险指标、技术分析TA-Lib、量化投资方法论体系、经典策略(多因子、动量、情绪指标等等),这一部分对金融投资理论和Python基础要求均较高,也是公众号后续推文的重点。

1、搭建自己的量化分析数据库

【手把手教你】搭建自己的量化分析数据库

2、Python计算量化策略风险指标

【手把手教你】Python量化策略风险指标

3、技术分析利器之TA-Lib

(1)【手把手教你】股市技术分析利器之TA-Lib(一)

(2)【手把手教你】股市技术分析利器之TA-Lib(二)

4、量化投资方法论体系

【干货分享】一文讲透量化投资方法论体系

5、量化投资实战案例

(1)【手把手教你】Python量化股票市场情绪指标ARBR

(2)【手把手教你】动量指标的Python量化回测

(3)【手把手教你】量价关系分析与Python实现

(4)【Python量化】如何利用欧奈尔的RPS寻找强势股?

(5)什么是多因子量化选股模型?

(6)如何对选股因子进行量化回测?

(7)【手把手教你】Python量化Fama-French三因子模型返回搜狐,查看更多

责任编辑:


原文地址1:https://blog.csdn.net/2301_81895949/article/details/136796270
参考资料:python中用turtle画一个圆形 https://blog.csdn.net/SXIAOYAN_/article/details/140061099

本课程主要讲解如下内容:引言NumPy多维数组ndarrayNumPy创建数组1、KNN算法背景02、KNN中距离度量03、KNN分类算法流程04、手写KNN分类算法05、KNN回归算法流程 06 量化交易  量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策。 定量投资和传统的定性投资本质上来说是相同的,二者都是基于市场非有效或弱有效的理论基础。两者的区别在于定量投资管理是“定性思想的量化应用”,更加强调数据。量化交易具有以下几个方面的特点: 1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。 2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。 3、套利思想。定量投资通过多面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。 4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。 量化投资技术包括多种具体方法,在投资品种选择、投资时机选择、股指期货套利、商品期货套利、统计套利和算法交易等领域得到广泛应用。在此,以统计套利和算法交易为例进行阐述。 1、统计套利 [1]  统计套利是利用资产价格的历史统计规律进行的套利,是一种风险套利,其风险在于这种历史统计规律在未来一段时间内是否继续存在。 统计套利的主要思路是先找出相关性most好的若干对投资品种,再找出每一对投资品种的长期均衡关系(协整关系),当某一对品种的价差(协整方程的残差)偏离到一定程度时开始建仓,买进被相对低估的品种、卖空被相对高估的品种,等价差回归均衡后获利了结。股指期货对冲是统计套利较常采用的一种操作策略,即利用不同国家、地区或行业的指数相关性,同时买入、卖出一对指数期货进行交易。在经济全球化条件下,各个国家、地区和行业股票指数的关联性越来越强,从而容易导致股指系统性风险的产生,因此,对指数间的统计套利进行对冲是一种低风险、高收益的交易方式。 2、算法交易。 算法交易又称自动交易、黑盒交易或机器交易,是指通过设计算法,利用计算机程序发出交易指令的方法。在交易中,程序可以决定的范围包括交易时间的选择、交易的价格,甚至包括most后需要成交的资产数量。 算法交易的主要类型有: (1) 被动型算法交易,也称结构型算法交易。该交易算法除利用历史数据估计交易模型的关键参数外,不会根据市场的状况主动选择交易时机和交易的数量,而是按照一个既定的交易方针进行交易。该策略的的核心是减少滑价(目标价与实际成交均价的差)。被动型算法交易most成熟,使用也most为广泛,如在国际市场上使用most多的成交加权平均价格(VWAP)、时间加权平均价格(TWAP)等都属于被动型算法交易。 (2) 主动型算法交易,也称机会型算法交易。这类交易算法根据市场的状况作出实时的决策,判断是否交易、交易的数量、交易的价格等。主动型交易算法除了努力减少滑价以外,把关注的重点逐渐转向了价格趋势预测上。 (3) 综合型算法交易,该交易是前两者的结合。这类算法常见的方式是先把交易指令拆开,分布到若干个时间段内,每个时间段内具体如何交易由主动型交易算法进行判断。两者结合可达到单纯一种算法无法达到的效果。 算法交易的交易策略有三:一是降低交易费用。大单指令通常被拆分为若干个小单指令渐次进入市场。这个策略的成功程度可以通过比较同一时期的平均购买价格与成交量加权平均价来衡量。二是套利。典型的套利策略通常包含三四个金融资产,如根据外汇市场利率平价理论,国内债券的价格、以外币标价的债券价格、汇率现货及汇率远期合约价格之间将产生一定的关联,如果市场价格与该理论隐含的价格偏差较大,且超过其交易成本,则可以用四笔交易来确保无风险利润。股指期货的期限套利也可以用算法交易来完成。三是做市。做市包括在当前市场价格之上挂一个限价卖单或在当前价格之下挂一个限价买单,以便从买卖差价中获利。此外,还有更复杂的策略,如“基准点“算法被交易员用来模拟指数收益,而”嗅探器“算法被用来发现most动荡或most不稳定的市场。任何类型的模式识别或者预测模型都能用来启动算法交易。  量化交易一般会经过海量数据仿真测试和模拟操作等手段进行检验,并依据一定的风险管理算法进行仓位和资金配置,实现风险most小化和收益most大化,但往往也会存在一定的潜在风险,具体包括: 1、历史数据的完整性。行情数据不完整可能导致模型与行情数据不匹配。行情数据自身风格转换,也可能导致模型失败,如交易流动性,价格波动幅度,价格波动频率等,而这一点是量化交易难以克服的。 2、模型设计中没有考虑仓位和资金配置,没有安全的风险评估和预防措施,可能导致资金、仓位和模型的不匹配,而发生爆仓现象。 3、网络中断,硬件故障也可能对量化交易产生影响。 4、同质模型产生竞争交易现象导致的风险。 5、单一投资品种导致的不可预测风险。 为规避或减小量化交易存在的潜在风险,可采取的策略有:保证历史数据的完整性;在线调整模型参数;在线选择模型类型;风险在线监测和规避等。 量化策略是指使用计算机作为工具,通过一套固定的逻辑来分析、判断和决策。量化策略既可以自动执行,也可以人工执行。 [2]  一个完整的量化策略包含哪些内容? 一个完整的策略需要包含输入、策略处理逻辑、输出;策略处理逻辑需要考虑选股、择时、仓位管理和止盈止损等因素。 选股 量化选股就是用量化的方法选择确定的投资组合,期望这样的投资组合可以获得超越大盘的投资收益。常用的选股方法有多因子选股、行业轮动选股、趋势跟踪选股等。 1 多因子选股 多因子选股是most经典的选股方法,该方法采用一系列的因子(比如市盈率、市净率、市销率等)作为选股标准,满足这些因子的股票被买入,不满足的被卖出。比如巴菲特这样的价值投资者就会买入低PE的股票,在PE回归时卖出股票。 2 风格轮动选股 风格轮动选股是利用市场风格特征进行投资,市场在某个时刻偏好大盘股,某个时刻偏好小盘股,如果发现市场切换偏好的规律,并在风格转换的初期介入,就可能获得较大的收益。 3 行业轮动选股 行业轮动选股是由于经济周期的的原因,有些行业启动后会有其他行业跟随启动,通过发现这些跟随规律,我们可以在前者启动后买入后者获得更高的收益,不同的宏观经济阶段和货币政策下,都可能产生不同特征的行业轮动特点。 4 资金流选股 资金流选股是利用资金的流向来判断股票走势。巴菲特说过,股市短期是投票机,长期看一定是称重机。短期投资者的交易,就是一种投票行为,而所谓的票,就是资金。如果资金流入,股票应该会上涨,如果资金流出,股票应该下跌。所以根据资金流向就可以构建相应的投资策略。 5 动量反转选股 动量反转选股方法是利用投资者投资行为特点而构建的投资组合。索罗斯所谓的反身性理论强调了价格上涨的正反馈作用会导致投资者继续买入,这就是动量选股的基本根据。动量效应就是前一段强势的股票在未来一段时间继续保持强势。在正反馈到达无法持续的阶段,价格就会崩溃回归,在这样的环境下就会出现反转特征,就是前一段时间弱势的股票,未来一段时间会变强。 6 趋势跟踪策略 当股价在出现上涨趋势的时候进行买入,而在出现下降趋势的时候进行卖出,本质上是一种追涨杀跌的策略,很多市场由于羊群效用存在较多的趋势,如果可以控制好亏损时的额度,坚持住对趋势的捕捉,长期下来是可以获得额外收益的。 择时 量化择时是指采用量化的方式判断买入卖出点。如果判断是上涨,则买入持有;如果判断是下跌,则卖出清仓;如果判断是震荡,则进行高抛低吸。  常用的择时方法有:趋势量化择时、市场情绪量化择时、有效资金量化择时、SVM量化择时等。 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值