一、从 linux 上的 shell 访问
1、Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/ 目录下
[root@hadoop151 conf]# cp /opt/module/hive/conf/hive-site.xml /opt/module/spark/conf/
[root@hadoop151 conf]# pwd
/opt/module/spark/conf
[root@hadoop151 conf]# cat hive-site.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://hadoop151:3306/metastore?createDatabaseIfNotExist=true</value>
<description>JDBC connect string for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>username to use against metastore database</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>147258</value>
<description>password to use against metastore database</description>
</property>
</configuration>
2、把 Mysql 的驱动 copy 到 jars/ 目录下
[root@hadoop151 mysql-connector-java-5.1.27]# cp mysql-connector-java-5.1.27-bin.jar /opt/module/spark/jars/
3、运行 spark-shell
scala> spark.sql("show tables").show
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
| default| score| false|
+--------+---------+-----------+
scala> spark.sql("select * from score").show
+----+----------+-----+
| uid|subject_id|score|
+----+----------+-----+
|1001| 01| 90|
|1001| 02| 90|
|1001| 03| 90|
|1002| 01| 85|
|

本文介绍了如何在Linux shell和IntelliJ IDEA中配置SparkSQL以连接Hive。包括将hive-site.xml复制到Spark配置目录,添加Mysql驱动,运行spark-shell和spark-sql,以及在IDEA中导入依赖和配置文件,实现代码访问Hive。
最低0.47元/天 解锁文章
2820

被折叠的 条评论
为什么被折叠?



