差分约束
题目大意:给你n个区间及每个区间取的元素个数ci,求出最少需要多少个元素才能满足每个区间取的元素个数。
利用强大的差分约束#(手动滑稽)
既然要求最小值,那么就是跑最长路喽!
首先,我们不难发现前两个条件:0 <= s[i] - s[i-1] <= 1。转化成a - b >= c的形式:s[i]-s[i-1]>=0,s[i-1]-s[i]>=-1。
羊后根据输入——在a到b的区间中至少有c个元素——就能够找到第三个条件: s[b] - s[a-1] >= c。但是由于a>=0,当a=0时数组会炸掉。因此我们要把所有的元素+1,也就是s[b+1] - s[a] >= c。
羊后spfa跑个最长路就好啦!
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct edge{
int next;
int to;
int dis;
};
int n,k,mi=0x7fffffff,ma;
int a,b,c;
int s[50005];
edge ed[200005];
int h[50005];
int dis[50005];
int que[1000000];
bool f[50005];
void read(int x,int y,int z){
ed[k].next=h[x];
ed[k].to=y;
ed[k].dis=z;
h[x]=k;
k++;
}
int main(){
scanf("%d",&n);
memset(h,-1,sizeof(h));
for (int i=0;i<n;i++){
scanf("%d%d%d",&a,&b,&c);
read(a,b+1,c);
mi=min(mi,a);
ma=max(ma,b+1);
}
for (int i=mi;i<ma;i++){
read(i,i+1,0);
read(i+1,i,-1);
dis[i]=-0x7fffffff;
}
dis[ma]=-0x7fffffff;
dis[mi]=0;
int r=0,w=1;
que[1]=mi; f[mi]=true;
while (r<w){
int x=que[++r];
f[x]=false;
for (int i=h[x];i!=-1;i=ed[i].next){
if (!f[ed[i].to]&&dis[ed[i].to]<dis[x]+ed[i].dis){
f[ed[i].to]=true;
dis[ed[i].to]=dis[x]+ed[i].dis;
que[++w]=ed[i].to;
}
}
}
printf("%d",dis[ma]);
return 0;
}