最大流最小割
最大流打挂好几次。。。
根据最大流最小割定理,最小割的容量=最大流的值,所以直接跑最大流就可以啦!
先拆点,把每个点拆成出点和入点。对于一条路径
i,j
,建一条从i的出点指向j的入点容量为inf的边。因为路径双向,因此再建一条从j的出点指向i的入点容量为inf的边。
对于每个点,建一条从入点指向出点容量为1的边。
跑的时候要从s的出点跑到t。因为不能把s给割掉。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 2000
#define MAXM 600
#define inf 0x7fffffff
using namespace std;
struct edge{
int next,to,flow,v;
}ed[MAXM*10+5];
struct father{
int e,x;
}fa[MAXN+5];
int n,m,k,s,t;
int h[MAXN+5],rem[MAXN+5],que[MAXN+5];
bool f[MAXN+5];
int bfs(){//EK
memset(f,false,sizeof(f));
int r=0,w=1; que[1]=s; f[s]=true; rem[s]=inf;
while (r<w){
int x=que[++r];
for (int i=h[x];~i;i=ed[i].next)
if (!f[ed[i].to]&&ed[i].v>ed[i].flow){
int v=ed[i].to;
que[++w]=v; f[v]=true; fa[v].e=i; fa[v].x=x;
rem[v]=min(rem[x],ed[i].v-ed[i].flow);
if (v==t) return rem[v];
}
}
return 0;
}
void change(int sum){
int now=t;
while (now!=s){
int e=fa[now].e;
ed[e].flow+=sum; ed[e^1].flow-=sum; now=fa[now].x;
}
}
int maxflow(){
int ans=0,sum;
while (sum=bfs())
ans+=sum,change(sum);
return ans;
}
void addedge(int x,int y,int z){
ed[k].next=h[x]; ed[k].to=y; ed[k].v=z; h[x]=k++;
ed[k].next=h[y]; ed[k].to=x; ed[k].v=0; h[y]=k++;
}
int main(){
scanf("%d%d%d%d",&n,&m,&s,&t);
memset(h,-1,sizeof(h));
for (int i=1;i<=m;i++){
int u,v; scanf("%d%d",&u,&v);
addedge(v+n,u,inf); addedge(u+n,v,inf);//拆点
}
for (int i=1;i<=n;i++) addedge(i,i+n,1);//拆点
s+=n;
printf("%d\n",maxflow());
}