DP
题目大意: 有 n n n个人 n ∗ k n*k n∗k张卡片,每个人都要分到 k k k张卡片。卡片上有数字,每个人也有一个数字,当一个人分到 i i i张和他的数字一样的卡片时会有 h [ i ] h[i] h[i]的贡献,求最大贡献。
设 g [ i ] [ j ] g[i][j] g[i][j]表示 i i i张卡片分给 j j j个人的最大贡献,那么有 g [ i ] [ j ] = m a x { g [ i − p ] [ j − 1 ] + h [ p ] } g[i][j]=max\{g[i-p][j-1]+h[p]\} g[i][j]=max{g[i−p][j−1]+h[p]}。对于每个人的数字算一下就好了。
代码:
#include<cctype>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 100005
#define M 505
#define F inline
using namespace std;
int n,k,mx,ans,c[N],f[N],h[11],g[M*10][M];
F char readc(){
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
return l==r?EOF:*l++;
}
F int _read(){
int x=0; char ch=readc();
while (!isdigit(ch)) ch=readc();
while (isdigit(ch)) x=(x<<3)+(x<<1)+(ch^48),ch=readc();
return x;
}
int main(){
n=_read(),k=_read();
for (int i=1;i<=n*k;i++) c[_read()]++;
for (int i=1,x;i<=n;i++) mx=max(mx,x=_read()),f[x]++;
for (int i=1;i<=k;i++) h[i]=_read();
for (int j=1;j<=n;j++)
for (int i=1;i<=j*k;i++)
for (int p=1;p<=k;p++)
if (i>=p) g[i][j]=max(g[i][j],g[i-p][j-1]+h[p]);
for (int i=1;i<=mx;i++)
if (f[i]) ans+=g[min(f[i]*k,c[i])][f[i]];
return printf("%d\n",ans),0;
}