善融商城商品库存监控分析

善融商城这个月上货了一些大家“喜闻乐见”的商品,而且还没有溢价,有利润空间自然这部分商品就会招到哄抢,没库存那是必须的。

因而我尝试去分析了下,以下作为过程记录,供参考。

首先,在浏览器进入商品页面,大大的红色“到货提醒”直接怼过来,不用多想这提醒指望不上。

42eb5e76f86ea1abbd358ab71a57cf4b.png

麻利地按下F12并刷新一下,发现以下url比较可疑,因为它含有“ProDetail”这种关键字眼。

http://buy.shanrongmall.com/client/ajaxProdDetail.jhtml?skuId=null&productId=******&creditpaymentId=&isJointTeamBuyType=&ts=2023041602224

查看它的返回数据,是一段Json信息,逐项给它展开,发现了字段“storage”,对应的值也为0,那应该大差不差了。

2f1521b8dc1040a2a08f945cf390ff01.png

那再返回去看url的组成和请求数据,最明显的就是url后面的ts=2023041602224(这是我比较早就测试了,所以时间比较早)。

很明显它是个跟时间有关的参数,一般来说它应该是要最新的时间,但这个url用旧的时间也是能够返回数据,也懒得去验证ts参数是否影响数据的准确性。既然都到这一步了,肯定想再看看ts是怎么来的。

因为ts是变化的,所以url应该是通过字符串构造出来的。以url中的“ajaxProdDetail”作为关键词搜索,得到以下两个结果,第一个就是url本身,另一个di就是构造url的js文件。

3886de0ecabf492ff3c4c8d68365544f.png

双击它跳转到js代码界面,往下看就发现了ts所在位置

653b07e6e9e6265948812ec42b8607c0.png

可见ts的来源就是这行代码:

'ts': (new Date()).toJSON().match(/\d/g).slice(0, 13).join('')

老样子,不放心就复制到控制台中运行一下:

c20d2b036e5e9a957292b5d090871a65.png

从结果看显然是对的。

简单地理解下ts的构造函数,就是获取ISO 8601日期格式时间,然后正则取所有数字,最后取前13位。

以我现在的时间为例,取ISO时间得到:

2023-04-19T11:06:41.000Z

取所有数字得到:

20230419110641000

再取前13位得到:

2023041911064

然后就组合一下url,搞定啦~收工。

注:未验证ts参数的必要性,仅做自己js逆向的学习记录,也给有需要的人一点参考。

- End -

更多精彩文章

点击下方名片关注【偶尔敲代码】

点亮小花1b3adbf9efd318e7a2ed21e37c018d1a.gif 让更多人了解

本研究利用Sen+MK方法分析了特定区域内的ET(蒸散发)趋势,重点评估了使用遥感数据的ET空间变化。该方法结合了Sen斜率估算器和Mann-Kendall(MK)检验,为评估长期趋势提供了稳健的框架,同时考虑了时间变化和统计显著性。 主要过程与结果: 1.ET趋势可视化:研究利用ET数据,通过ET-MK和ET趋势图展示了蒸散发在不同区域的空间和时间变化。这些图通过颜色渐变表示不同的ET水平及其趋势。 2.Mann-Kendall检验:应用MK检验来评估ET趋势的统计显著性。检验结果以二元分类图呈现,标明ET变化的显著性,帮助识别出有显著变化的区域。 3.重分类结果:通过重分类处理,将区域根据ET变化的显著性进行分类,从而聚焦于具有显著变化的区域。这一过程确保分析集中在具有实际意义的发现上。 4.最终输出:最终结果以栅格图和png图的形式呈现,支持各种应用,包括政策规划、水资源管理和土地利用变化分析,这些都是基于详细的时空分析。 ------------------------------------------------------------------- 文件夹构造: data文件夹:原始数据,支持分析的基础数据(MOD16A2H ET数据 宁夏部分)。 results文件夹:分析结果与可视化,展示研究成果。 Sen+MK_optimized.py:主分析脚本,适合批量数据处理和自动化分析。 Sen+MK.ipynb:Jupyter Notebook,复现可视化地图。
【云南省DEM(30米分辨率)】是一款地理信息数据产品,主要涵盖了云南省的地形高程信息。这款数据基于2019年8月5日发布的ASTER GDEM V3(Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model Version 3)版本,是一个全球数字高程模型,提供的是30米的高分辨率。ASTER GDEM V3是通过日本航空航天探索局(JAXA)和美国国家航空航天局(NASA)合作的ASTER卫星获取的数据,它提供了全球范围内的高精度地表地形信息。 1. ASTER GDEM V3:ASTER GDEM V3是目前广泛使用的公开全球高程数据之一,其数据源自ASTER卫星的多光谱遥感图像。该数据集通过分析不同波段的反射和热发射来构建地表的三维模型,从而得出高程信息。V3版本是对之前版本的更新和改进,具有更高的数据质量和更少的错误。 2. GeoTIFF格式:这份数据采用GeoTIFF(Georeferenced Tagged Image File Format)格式,这是一种特殊的TIFF图像文件,包含了地理坐标系统信息。这意味着每张图像的每个像素都与地球表面的特定位置对应,方便在GIS软件中进行空间分析和地图制作。 3. WGS84坐标系:WGS84(World Geodetic System 1984)是全球最常用的地心地固坐标系统,广泛应用于GPS定位和其他全球导航系统。在云南省DEM数据中,使用WGS84坐标系可以确保与其他全球地理数据的一致性和兼容性。 4. DEM(Digital Elevation Model):DEM是一种表示地面高程信息的数字模型,由等间距的高程点构成,用于描述地表地形特征。它在地理信息系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值