题目
这天,一只蜗牛来到了二维坐标系的原点。
在 x 轴上长有 n根竹竿。
它们平行于 y 轴,底部纵坐标为 0,横坐标分别为x1,x2,x3,x4...xn。
竹竿的高度均为无限高,宽度可忽略。
蜗牛想要从原点走到第 n个竹竿的底部也就是坐标 (xn,0)。
它只能在 x 轴上或者竹竿上爬行,在 x 轴上爬行速度为 1 单位每秒;由于受到引力影响,蜗牛在竹竿上向上和向下爬行的速度分别为 0.7 单位每秒和 1.3 单位每秒。
为了快速到达目的地,它施展了魔法,在第 i和 i+1 根竹竿之间建立了传送门(0<i<n),如果蜗牛位于第 i根竹竿的高度为 ai 的位置 (xi,ai),就可以瞬间到达第 i+1 根竹竿的高度为 bi+1 的位置 (xi+1,bi+1),当然也可以选择不瞬移到第 i+1 根竹竿。
请计算蜗牛最少需要多少秒才能到达目的地。
输入格式
输入共 1+n 行,第一行为一个正整数 n;
第二行为 n个正整数 x1,x2,…,x(n);
后面 n−1行,每行两个正整数 a(i),b(i+1)。
输出格式
输出共一行,一个浮点数表示答案(四舍五入保留两位小数)。
数据范围
对于 20%的数据,保证 n≤15;
对于 100%的数据,保证 1≤n≤10^5,1≤ai,bi≤10^4,1≤xi≤10^9。
输入样例:
3
1 10 11
1 1
2 1
输出样例:
4.20
样例解释
蜗牛路线:
(0,0)→(1,0)→(1,1)→(10,1)→(10,0)→(11,0)(0,0)→(1,0)→(1,1)→(10,1)→(10,0)→(11,0),花费时间为 1+10.7+0+11.3+1≈4.20
解题思路
可以看出该算法的规模在10^5级别,故时间复杂度不能超过nlogn级别,再看如果暴力枚举需要2^n的时间复杂度,故要使用dp或者贪心进行优化,然而该题目不能保证局部最优致使全局最优,故使用dp解决该问题。
源码
#include <bits/stdc++.h>
using namespace std;
const int N = 100010,INF = 1e9;
int a[N],b[N],x[N];
double f[N][2];
int n;
double get(int x1,int x2){
if(x1>x2){
return (x1-x2)/1.3;
}else{
return (x2-x1)/0.7;
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&x[i]);
for(int i=1;i<n;i++) scanf("%d%d",&a[i],&b[i+1]);
for(int i=0;i<=n;i++) f[i][0]=f[i][1]=INF;
f[1][0]=x[1];
for(int i=2;i<=n;i++){
int d=x[i]-x[i-1];
f[i][0]=min(
f[i-1][0]+d,
f[i-1][1]+get(b[i-1],0)+d
);
f[i][1]=min(
f[i-1][0]+get(0,a[i-1]),
f[i-1][1]+get(b[i-1],a[i-1])
);
}
printf("%.2f",min(f[n][0],f[n][1]+get(b[n],0)));
return 0;
}