蜗牛(寒假每日一题+dp)

题目

这天,一只蜗牛来到了二维坐标系的原点。

在 x 轴上长有 n根竹竿。

它们平行于 y 轴,底部纵坐标为 0,横坐标分别为x1,x2,x3,x4...xn。

竹竿的高度均为无限高,宽度可忽略。

蜗牛想要从原点走到第 n个竹竿的底部也就是坐标 (xn,0)。

它只能在 x 轴上或者竹竿上爬行,在 x 轴上爬行速度为 1 单位每秒;由于受到引力影响,蜗牛在竹竿上向上和向下爬行的速度分别为 0.7 单位每秒和 1.3 单位每秒。

为了快速到达目的地,它施展了魔法,在第 i和 i+1 根竹竿之间建立了传送门(0<i<n),如果蜗牛位于第 i根竹竿的高度为 ai 的位置 (xi,ai),就可以瞬间到达第 i+1 根竹竿的高度为 bi+1 的位置 (xi+1,bi+1),当然也可以选择不瞬移到第 i+1 根竹竿。

请计算蜗牛最少需要多少秒才能到达目的地。

输入格式

输入共 1+n 行,第一行为一个正整数 n;

第二行为 n个正整数 x1,x2,…,x(n);

后面 n−1行,每行两个正整数 a(i),b(i+1)。

输出格式

输出共一行,一个浮点数表示答案(四舍五入保留两位小数)。

数据范围

对于 20%的数据,保证 n≤15;
对于 100%的数据,保证 1≤n≤10^5,1≤ai,bi≤10^4,1≤xi≤10^9。

输入样例:

3
1 10 11
1 1
2 1

输出样例:

4.20

样例解释

蜗牛路线:

(0,0)→(1,0)→(1,1)→(10,1)→(10,0)→(11,0)(0,0)→(1,0)→(1,1)→(10,1)→(10,0)→(11,0),花费时间为 1+10.7+0+11.3+1≈4.20

解题思路

可以看出该算法的规模在10^5级别,故时间复杂度不能超过nlogn级别,再看如果暴力枚举需要2^n的时间复杂度,故要使用dp或者贪心进行优化,然而该题目不能保证局部最优致使全局最优,故使用dp解决该问题。

 

源码

#include <bits/stdc++.h>

using namespace std;

const int N = 100010,INF = 1e9;

int a[N],b[N],x[N];
double f[N][2];
int n;

double get(int x1,int x2){
    if(x1>x2){
        return (x1-x2)/1.3;
    }else{
        return (x2-x1)/0.7;
    }
}

int main()
{
    scanf("%d",&n);
    
    for(int i=1;i<=n;i++) scanf("%d",&x[i]);
    for(int i=1;i<n;i++) scanf("%d%d",&a[i],&b[i+1]);
    
    for(int i=0;i<=n;i++) f[i][0]=f[i][1]=INF;
    
    f[1][0]=x[1];
    for(int i=2;i<=n;i++){
        int d=x[i]-x[i-1];
        f[i][0]=min(
                f[i-1][0]+d,
                f[i-1][1]+get(b[i-1],0)+d
            );
        f[i][1]=min(
                f[i-1][0]+get(0,a[i-1]),
                f[i-1][1]+get(b[i-1],a[i-1])
            );
    }
    
    printf("%.2f",min(f[n][0],f[n][1]+get(b[n],0)));
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值