题目
小蓝用黑白棋的 n个棋子排成了一行,他在脑海里想象出了一个长度为 n的 01 串 T,他发现如果把黑棋当做 1,白棋当做 0,这一行棋子也是一个长度为 n 的 01 串 S。小蓝决定,如果在 S中发现一个棋子和它两边的棋子都不一样,就可以将其翻转变成另一个颜色。也就是说,如果 S 中存在子串 101 或者 010,就可以选择将其分别变为 111 和 000,这样的操作可以无限重复。小蓝想知道最少翻转多少次可以把 S 变成和 T 一模一样。
输入格式
输入包含多组数据。
输入的第一行包含一个正整数 D 表示数据组数。
后面 2D 行每行包含一个 01 串,每两行为一组数据,第 2i−1 行为第 i 组数据的 Ti,第 2i 行为第 i 组数据的 Si,Si 和 Ti 长度均为 ni。
输出格式
对于每组数据,输出一行包含一个整数,表示答案,如果答案不存在请输出 −1
。
数据范围
样例
输入样例
2
1000111
1010101
01000
11000
输出样例
2
-1
题目思路
该代码重要在与对思维的锻炼和对题目的分析。根据题目给出的规则和例子,我们可以轻易推出,改变数字中的一位数不会对另一位造成影响,因此我们只要从左到右或者从右向左遍历一遍,将s中与t中的不同修改,如果发现不能修改便返回-1。
源代码
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1e6+10;
int n;
char t[N],s[N];
int main()
{
scanf("%d",&n);
while(n--){
scanf("%s%s",t,s);
int m=strlen(t);
int ans=0;
if(s[0]!=t[0]||s[m-1]!=t[m-1]) printf("%d\n",-1);
else{
for(int i=m-2;i>0;i--){
if(s[i]!=t[i]){
if(s[i-1]==s[i+1] && s[i-1]!=s[i] && s[i-1]==t[i-1]) ans++;
else{
ans=-1;
break;
}
}
}
printf("%d\n",ans);
}
}
return 0;
}