- 实现一个最小栈,存在push、pop和返回最小值Min(O(1))操作
原理:定义一个结构体elem,包含data和min,第一次压栈时,将data = min,当每次压栈操作时都比较栈顶的min和data,如果min大于data就给min重新赋值,使得栈顶的min永远是最小值,最后返回栈顶的min就可以了。
头文件:
#pragma once
#include<iostream>
#include<stack>
using namespace std;
typedef int datatype;
struct elem
{
datatype data;
datatype min;
};
class MinStack
{
private:
elem e;
stack<elem> s;
public:
MinStack()
{
e.data = 0;
e.min = 0;
}
void push(datatype d);
void pop();
datatype& min();
};
#include"stackandqueue.h"
void MinStack::push(datatype d)
{
e.data = d;
e.min = d;
if (s.empty())
{
s.push(e);
}
else
{
if (d <= s.top().min)
{
s.push(e);
}
else
{
e.min = s.top().min;
s.push(e);
}
}
}
void MinStack::pop()
{
s.pop();
}
datatype& MinStack::min()
{
return s.top().min;
}
这道题还有一种思路,就是使用两个栈来实现一个最小栈,一个栈存数据,一个栈存最小值,不断更新最小值的栈,最后返回最小值时直接返回最小栈的栈顶即可。在出栈时如果data的栈顶和min的栈顶不同,则data出栈,否则同时出栈。
头文件
#pragma once
#include<iostream>
#include<stack>
using namespace std;
typedef int datatype;
class MinStack
{
private :
stack<datatype> data;
stack<datatype> mins;
public:
void push(datatype d);
void pop();
datatype& min();
};
主文件
#include"stackandqueue.h"
void MinStack::push(datatype d)
{
data.push(d);
if (mins.empty())
{
mins.push(d);
}
else
{
if (d < mins.top())
{
mins.push(d);
}
}
}
void MinStack::pop()
{
if (data.top() == mins.top())
{
data.pop();
mins.pop();
}
else
{
data.pop();
}
}
datatype& MinStack::min()
{
return mins.top();
}
测试函数
#include"stackandqueue.h"
int main()
{
MinStack s;
s.push(3);
s.push(2);
s.push(4);
s.push(6);
s.push(1);
s.min();
return 0;
}
- 两个栈实现一个队列
栈的特性是先进后出,而队列是先进先出,所以用栈实现队列的特性必须要两个栈,一个栈push,一个栈pop。
要注意的是判空的时候必须两个栈都为空才为空。
#pragma once
#include<iostream>
#include<stack>
using namespace std;
typedef int datatype;
class stacktoqueue
{
private:
stack<datatype> s1;
stack<datatype> s2;
public:
void push(datatype d);
void pop();
datatype& GetTail();//获取尾
datatype& GetHead();//获取头
bool Empty();//判断是否为空
};
#include"stackandqueue.h"
void stacktoqueue::push(datatype d)
{
s1.push(d);
}
void stacktoqueue::pop()
{
if (!s2.empty())
{
s2.pop();
}
else
{
while (!s1.empty())
{
datatype a = s1.top();
s1.pop();
s2.push(a);
}
s2.pop();
}
}
datatype& stacktoqueue::GetTail()
{
if (!s1.empty())
{
return s1.top();
}
else
{
while (!s2.empty())
{
datatype a = s2.top();
s2.pop();
s1.push(a);
}
return s1.top();
}
}
datatype& stacktoqueue::GetHead()
{
if (!s2.empty())
{
return s2.top();
}
else
{
while (!s1.empty())
{
datatype a = s1.top();
s1.pop();
s2.push(a);
}
return s2.top();
}
}
bool stacktoqueue::Empty()
{
if (s1.empty() && s2.empty())
{
return true;
}
return false;
}
- 两个队列实现一个栈
这道题看上去和上面的一样,其实不然,因为队列是先进先出的,所以如果是上面那种思路,那么两个队列无法相反,所以这里我们就设定一个队列放数据,另外一个队列当作中转站,入栈时将数据入q1,出队时先将q1中的前size-1个出队,然后入队到q2,再将q1中最后一个出队,然后一次将q2的元素出队并入队到q1。
#pragma once
#include<iostream>
#include<queue>
#include<stack>
using namespace std;
typedef int datatype;
class queuetostack
{
private:
queue<datatype> q1;
queue<datatype> q2;
public:
void push(datatype d);
void pop();
};
#include"stackandqueue.h"
void queuetostack::push(datatype d)
{
q1.push(d);
}
void queuetostack::pop()
{
if (q1.empty())
{
return;
}
else
{
while (q1.size() != 1)
{
datatype a = q1.front();
q1.pop();
q2.push(a);
}
q1.pop();
while (!q2.empty())
{
datatype b = q2.front();
q2.pop();
q1.push(b);
}
}
}
- 保证元素的出栈入栈的合法性,例如入栈的序列(1,2,3,4,5),则出栈的序列是(4,5,3,2,1)
这道题我们可以用两个字符串来分别代表入栈序列和出栈序列
- 找一个辅助栈,将入栈序列的第一个元素压栈。
- 看栈顶元素是否和出栈序列的第一个元素相等,相等则出栈。 然后将第二个入栈序列的元素压栈,与出栈序列的下一个比。
- 如果不相等,继续将入栈序列的元素压栈。重复上面的步骤
- 如果出栈元素遍历完后,辅助栈为空,则为合法的出栈序列。
#include<iostream>
#include<stack>
bool IsTrue(int * arr1,int* arr2)
{
int len1 = sizeof(arr1) / sizeof(arr1[0]);
int len2 = sizeof(arr2) / sizeof(arr2[0]);
if (len1 != len2)
{
return false;
}
int j = 0;
stack<int> s;
for (int i = 0; i <= len1; i++)
{
s.push(arr1[i]);
while (s.top() == arr2[j] && s.size() > 0)
{
s.pop();
j++;
}
}
return s.size() > 0 ? false : true;
}
int main()
{
int arr1[5] = { 1, 2, 3, 4, 5 };
int arr2[5] = { 4, 5, 3, 2, 1 };
IsTrue(arr1, arr2);
return 0;
}