算法导论第三版第二章思考题答案

算法导论第三版第二章思考题答案

2.1

#include<iostream>
using namespace std;
const int N = 1e5 + 10, INF = 2e9, K = 5;
int a[N], L[N], R[N];
void insert_sort(int a[], int l, int r)
{
    for(int i = l + 1; i <= r; ++i)
	{
		int v = a[i], j = i - 1;

		for(; j >= l && a[j] > v; --j) a[j + 1] = a[j];
		a[j + 1] = v;
	}
}
void merge(int a[], int l, int mid, int r)
{
    int n1 = mid - l + 1, n2 = r - mid;
    for(int i = 1; i <= n1; ++i) L[i] = a[l + i - 1];
    for(int i = 1; i <= n2; ++i) R[i] = a[mid + i];
    L[n1 + 1] = R[n2 + 1] = INF;
    int i = 1, j = 1;
    for(int k = l; k <= r; ++k)
    {
        if(L[i] <= R[j]) a[k] = L[i ++];
        else a[k] = R[j++];
    }
}
void merge_sort(int a[], int l, int r)
{
    if(l >= r) return;
    if(r - l + 1 <= K)
    {
        insert_sort(a, l, r);
        return;
    }
    int mid = l + r >> 1;
    merge_sort(a, l, mid);
    merge_sort(a, mid + 1, r);
    merge(a, l, mid, r);
}

int main()
{
    int n;
    cin >> n;
    
    for(int i = 1; i <= n; ++i) cin >> a[i];
    merge_sort(a, 1, n);
    
    for(int i = 1; i <= n; ++i) cout << a[i] << " ";
    cout << endl;
    return 0;
}

证明: a . 插入排序的时间复杂度为 O ( n 2 ) , 所以最坏复杂度为 ( n / k ) ∗ k 2 = n ∗ k . b . 通过插入排序获得了长度为 n / k 的有序段,且总长度为 n ,为了合并回 长度为 n 的段,我们需要两个子序列,并递归的做下去,每次合并都比较 了 n 个元素,所以时间为 O ( n l g ( n / k ) ) c . n k + n l g ( n / k ) = n l g n , k = O ( l g n ) 证明:\\ a.插入排序的时间复杂度为O(n^2), 所以最坏复杂度为(n/k) * k^2 =n*k.\\ b. 通过插入排序获得了长度为n/k的有序段,且总长度为n,为了合并回\\长度为n的段,我们需要两个子序列,并递归的做下去,每次合并都比较\\了n个元素,所以时间为O(nlg(n/k))\\ c.nk + nlg(n / k) = nlgn,k = O(lgn) 证明:a.插入排序的时间复杂度为O(n2),所以最坏复杂度为(n/k)k2=nk.b.通过插入排序获得了长度为n/k的有序段,且总长度为n,为了合并回长度为n的段,我们需要两个子序列,并递归的做下去,每次合并都比较n个元素,所以时间为O(nlg(n/k))c.nk+nlg(n/k)=nlgn,k=O(lgn)

2.2

a . A ′ 的所有元素是 A 中所有元素不重不漏的有序排列。 b . 循环不变式 : 每次迭代开始前, a j 都是 a [ j : n ] 中最小的元素。证明如下: 初始;当 j = A . l e n g t h , a [ A . l e n g t h : A . l e n g t h ] 只有末尾单独元素,成立 . 保持 : 当 j ! = A . l e n g t h , 每次迭代我们都把较大的数字交换到左边的位置, 所以 a j 始终是最小的。 终止 : 最后一次迭代结束后, j = i , 此时 a i 是 a [ i : n ] 最小的元素成立。 c . 循环不变式 : 每次迭代开始前, a i − 1 都是第 i − 1 小的 . 证明如下: 初始:当 i = 1 , i − 1 = 0 ,为空,所以成立。 保持:每次迭代开始前,由 b 中的终止结论可知,上一次关于 i 的迭代使得 a i − 1 成为了 a [ i − 1 : n ] 中最小的那个元素。所以每次迭代开始前, a i − 1 都是第 i − 1 小的。 终止:当最后一次迭代结束后, i = A . l e n g t h , 此时 a [ 1 : n − 1 ] 由前面的 分析已经有序且是前 i − 1 小,所以最后一个元素是最大的,也就是不等式 2 − 3 所说的。 d . O ( n 2 ) ,同插入排序。 a. A'的所有元素是A中所有元素不重不漏的有序排列。\\ b. 循环不变式: 每次迭代开始前,a_j都是a[j:n]中最小的元素。证明如下:\\ 初始;当j=A.length, a[A.length:A.length]只有末尾单独元素,成立.\\ 保持:当j!=A.length,每次迭代我们都把较大的数字交换到左边的位置,\\所以a_j始终是最小的。\\ 终止:最后一次迭代结束后,j = i, 此时a_i是a[i:n]最小的元素成立。\\ c. 循环不变式:每次迭代开始前,a_{i-1}都是第{i - 1}小的.证明如下:\\ 初始:当i=1,i-1=0,为空,所以成立。\\ 保持:每次迭代开始前,由\\b中的终止结论可知,上一次关于i的迭代使得a_{i-1}成为了a[i-1:n]\\中最小的那个元素。所以每次迭代开始前,a_{i-1}都是第i-1小的。\\ 终止:当最后一次迭代结束后,i=A.length,此时a[1:n-1]由前面的\\分析已经有序且是前i-1小,所以最后一个元素是最大的,也就是不等式\\2-3所说的。\\ d.O(n^2),同插入排序。 a.A的所有元素是A中所有元素不重不漏的有序排列。b.循环不变式:每次迭代开始前,aj都是a[j:n]中最小的元素。证明如下:初始;当j=A.length,a[A.length:A.length]只有末尾单独元素,成立.保持:j!=A.length,每次迭代我们都把较大的数字交换到左边的位置,所以aj始终是最小的。终止:最后一次迭代结束后,j=i,此时aia[i:n]最小的元素成立。c.循环不变式:每次迭代开始前,ai1都是第i1小的.证明如下:初始:当i=1i1=0,为空,所以成立。保持:每次迭代开始前,由b中的终止结论可知,上一次关于i的迭代使得ai1成为了a[i1:n]中最小的那个元素。所以每次迭代开始前,ai1都是第i1小的。终止:当最后一次迭代结束后,i=A.length,此时a[1:n1]由前面的分析已经有序且是前i1小,所以最后一个元素是最大的,也就是不等式23所说的。d.O(n2),同插入排序。

2.3

a . O ( n ) a.O(n) a.O(n)
b.

for(int i = 0; i <= n; ++i)
{
	int base = 1;
	for(int i = 0; i < base; ++i) base *= x;
	ans += base * a[i];
}

这个是 O ( n 2 ) O(n^2) O(n2),更慢。
c . i = − 1 代入即可。 d . 终止时的式子展开即可。 c.i = -1代入即可。\\ d. 终止时的式子展开即可。 c.i=1代入即可。d.终止时的式子展开即可。

2.4

a . ( 2 , 1 ) , ( 3 , 1 ) , ( 8 , 6 ) , ( 8 , 1 ) , ( 6 , 1 ) b . 按照降序排列拥有最多的逆序对, S = 1 + 2 + . . + n − 1 = n ∗ n / 2 c . 插入排序花在寻找插入位置的时间与逆序对的数量正相关。每多寻 找一次,都代表存在 a i > a j ,且 i < j . a.(2,1), (3, 1),(8,6),(8,1),(6,1) b.按照降序排列拥有最多的逆序对,S=\\ 1 + 2 + .. +n-1 = n * n / 2 \\ c. 插入排序花在寻找插入位置的时间与逆序对的数量正相关。每多寻\\找一次,都代表存在a_i > a_j,且i<j. a.(2,1),(3,1),(8,6),(8,1),(6,1)b.按照降序排列拥有最多的逆序对,S=1+2+..+n1=nn/2c.插入排序花在寻找插入位置的时间与逆序对的数量正相关。每多寻找一次,都代表存在ai>aj,且i<j.
d.

LL ans;

void merge(int a[], int l, int mid, int r)
{
    int n1 = mid - l + 1, n2 = r - mid;
    for(int i = 1; i <= n1; ++i) L[i] = a[l + i - 1];
    for(int i = 1; i <= n2; ++i) R[i] = a[mid + i];
    L[n1 + 1] = R[n2 + 1] = INF;
    int i = 1, j = 1;
    for(int k = l; k <= r; ++k)
    {
        if(L[i] <= R[j]) a[k] = L[i ++];
        else a[k] = R[j++], ans += n1 - i + 1;
    }
}
void merge_sort(int a[], int l, int r)
{
    if(l >= r) return;
    int mid = l + r >> 1;
    merge_sort(a, l, mid), merge_sort(a, mid + 1, r);
    merge(a, l, mid, r);
}

汇总传送门

链接: 算法导论习题答案汇总

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

102101141高孙炜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值