(顶会)组合结构的贝叶斯优化

Bayesian Optimization of Combinatorial Structures

1.摘要

本文提出了一个算法(BOCS),它基于一个自适应的、可扩展的模型,即使数据稀缺,也能识别有用的组合结构。我们的采集函数率先使用半定编程来实现效率和可伸缩性。实验结果表明,该算法的性能始终优于其他组合方法和贝叶斯优化方法。

2.介绍

本文的主要贡献是:

  • 一种获得获取函数近似优化器的新方法,利用凸优化的算法思想来实现可伸缩性和效率。该方法克服了许多采集函数对大型组合领域所固有的有限的可扩展性。
  • 我们提出了一个捕获结构元素相互作用的模型,并展示了如何在数据昂贵且稀缺时在实践中推断这些相互作用。我们还证明了这个可解释的模型在实验数据上的有用性。
  • 我们评估了BOCS算法的性能,以及机器学习和离散优化在各种基准问题上的方法,包括机器学习、航空航天工程和食品安全控制等任务。

本文的代码在https://github.com/baptistar/BOCS

3.BOCS

3.1统计模型

在这里插入图片描述
算法流程
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值