辗转相除法
代码段
//gcd, greatest common divisor;
int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
证明过程
设两数为a、b(a>b),求它们最大公约数的步骤:
设q = a / b, r = a % b,则a = bq + r(0 ≤ r < b)。
1)若r = 0, 则r便是a和b的最大公约数。
2)若r ≠ 0。首先证明:任何a和b的公约数都是r的约数。欲证之,可把r写成r = a - bq,假设d是a和b的一个公约数,则可令a = sd, b = td,则r = sd -tdq = (s -tq)d。因为s,t,q是整数,s - tq是整数,所以r可以被d整除,所以a和b的最大公约数也是b和r的最大公约数。因此,可以继续对b和r进行上述取余运算。这个过程在有限的重复之后,可以最终得到r = 0的结果,于是便得到了a和b的最大公约数。