欢迎使用CSDN-markdown编辑器

辗转相除法

代码段
//gcd, greatest common divisor;
int gcd(int a, int b) {
    return b == 0 ? a : gcd(b, a % b);
}
证明过程
设两数为a、b(a>b),求它们最大公约数的步骤:
设q = a / b, r = a % b,则a = bq + r(0 ≤ r < b)。
1)若r = 0, 则r便是a和b的最大公约数。
2)若r ≠ 0。首先证明:任何a和b的公约数都是r的约数。欲证之,可把r写成r = a - bq,假设d是a和b的一个公约数,则可令a = sd, b = td,则r = sd -tdq = (s -tq)d。因为s,t,q是整数,s - tq是整数,所以r可以被d整除,所以a和b的最大公约数也是b和r的最大公约数。因此,可以继续对b和r进行上述取余运算。这个过程在有限的重复之后,可以最终得到r = 0的结果,于是便得到了a和b的最大公约数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值