[最小费用最大流]UVa1658

这种问题难点仅在于建模

理解透彻原模型!

#include<bits/stdc++.h>
using namespace std;
const int maxn  = 10000 + 100;
const int INF  = 0x7f7f7f7f;
typedef long long LL;
struct Edge{
    int from,to,cap,flow,cost;

    Edge(int u,int v,int c,int f,int w):from(u),to(v),cap(c),flow(f),cost(w) {}
};
struct MCMF{
    int n,m;
    vector<Edge> edges;
    vector<int> G[maxn];
    int inq[maxn];
    int d[maxn];
    int p[maxn];
    int a[maxn];

    void init(int n){
        this->n=n;
        for(int i=0;i<n;i++) G[i].clear();
        edges.clear();
    }
    void AddEdge(int from,int to,int cap,int cost){
        edges.push_back(Edge(from,to,cap,0,cost));
        edges.push_back(Edge(to,from,0,0,-cost));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }
    bool BellmanFord(int s,int t,int &flow,LL & cost){
        for(int i=0;i<n;i++) d[i]=INF;
        memset(inq,0,sizeof(inq));
        d[s]=0; inq[s]=1; p[s]=0; a[s]=INF;

        queue<int> Q;
        Q.push(s);
        while(!Q.empty()){
            int u=Q.front(); Q.pop();
            inq[u]=0;
            for(int i=0;i<G[u].size();i++){
                Edge& e=edges[G[u][i] ];
                if(e.cap>e.flow && d[e.to]>d[u]+e.cost){
                    d[e.to]=d[u]+e.cost;
                    p[e.to]=G[u][i];
                    a[e.to]=min(a[u],e.cap-e.flow);
                    if(!inq[e.to]) { Q.push(e.to); inq[e.to]=1; }
                }
            }
        }
        if(d[t]==INF) return false;
        flow+=a[t];
        cost+=(LL) d[t]*(LL)a[t];
        for(int u=t;u!=s;u=edges[p[u]].from){
            edges[p[u] ].flow+=a[t];
            edges[p[u]^1 ].flow-=a[t];

        }
        return true;
    }
    int MincostMaxdflow(int s,int t,int limit,LL & cost){
        int flow=0; cost=0;
        while(flow<limit && BellmanFord(s,t,flow,cost));
        return flow;
    }
}g;
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m)){
        g.init(2*n-2);
        for(int i=2;i<=n-1;i++){
            g.AddEdge(i-1,n-2+i,1,0);
        }
        for(int i=0;i<m;i++){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w); v-=1;
            if(u!=1&&u!=n) u+=n-2;
            else u-=1;
            g.AddEdge(u,v,1,w);
        }
        LL cost;
        g.MincostMaxdflow(0,n-1,2,cost);
        printf("%lld\n",cost);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值