非著名架构师
专注AI大模型,高精度预测气象开发
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Leaflet-Velocity 气象可视化开发教程:从入门到精通
javascript// 自定义风场渲染器...options// 创建自定义风羽图// 创建Canvas图层// 绘制风羽图逻辑});// 计算每个数据点的位置i++) {// 计算风速和风向// 转换坐标为像素// 绘制风羽ctx.save();// 绘制风羽主体// 根据风速添加风羽标记// 转换为节// 绘制三角旗ctx.fill();// 绘制长线// 绘制短线。原创 2026-01-18 13:47:13 · 29 阅读 · 0 评论 -
2026 年 AI 发展的新方向与新路线(从“堆参数”到“搭系统”)
2026 不会只发生一件事:它更像一次路线切换——。你会看到赢家不一定是“模型最大”,而是“闭环最完整”。我把 2026 的新方向拆成 6 条“新路线”,每条都给你可落地的打法。原创 2026-01-06 14:33:23 · 59 阅读 · 0 评论 -
2026 开年最火的 AI 项目清单(不是“模型热”,而是“能交付的系统热”)
最火的是能跑进业务流程、能接系统权限、能对结果负责的项目形态。下面这 10 类,是我按“热度 + 预算真实投放 + 可复制落地”筛出来的。原创 2026-01-06 14:32:40 · 95 阅读 · 0 评论 -
Cesium 实现动态加载气象数据:渲染成动态雨雪/云层效果(源码 + 原理)
本文介绍了在Cesium中实现动态天气效果的技术方案。核心思路是通过时间轴驱动多层数据动态切换,包括:1)时间维度处理,按序列加载不同气象图层;2)空间维度处理,将气象数据切分为瓦片;3)效果层实现,制作风场、降水等动态可视化效果。文章详细讲解了后端数据预处理(生成瓦片和风场JSON)、前端实现(双层雷达瓦片交替渐变、风场粒子系统)的具体方法,并提供了完整的代码示例。此外还探讨了雨雪粒子、云层效果等增强功能,以及工程化建议,为构建科学准确的动态天气可视化系统提供了实用解决方案。原创 2026-01-05 13:21:39 · 154 阅读 · 0 评论 -
【光伏风测功率预测】功率预测提升 1–2% 带来多少收益?——AI 预测在交易侧的真实价值解析
新能源功率预测精度提升1-2%的经济价值远超表面数字。在电力交易场景中,预测误差每降低1%会通过偏差考核、报量策略优化和储能调度效率三个维度产生叠加收益。以200MW风电场为例,nRMSE从10%降至9%可减少15%偏差成本,年收益达45万元;光伏电站提升1.5%可增收20%以上。更关键的是,AI概率预测(P10/P50/P90)能支持分时段风险定价,使高价时段报量更激进,年收益可额外增加数十万元。对风光储项目,预测精度提升1-2%能带来5-15%的储能收益增长,综合年收益可达300-600万元。预测技术本原创 2025-12-17 09:24:11 · 407 阅读 · 0 评论 -
【光伏风测功率预测】风光储一张网:多场站功率预测与协同调度的算法框架解析
摘要:随着新能源渗透率提升,风光储一体化系统从单场站运行转向集群化运营,亟需多场站功率预测与协同调度解决方案。本文提出"数据层-预测层-调度层-运维层"四层架构:通过多源气象融合和站点拓扑构建数据基础;采用GNN+Transformer等图时空模型实现多场站联合预测;基于概率预测(P10/P50/P90)和MPC滚动优化进行储能调度;配套MLOps保障系统稳定性。该方案能降低聚合预测误差15%-30%,减少偏差考核费用20%以上,提升现货交易收益,为风光储基地和虚拟电厂提供可落地的技术路原创 2025-12-16 09:39:06 · 419 阅读 · 0 评论 -
【光伏风测功率预测】从经验曲线到数据驱动:CNN-LSTM/Transformer 在电站侧的落地实践
摘要: 新能源电站预测正从“经验曲线”向“数据驱动”转型。传统依赖人工修正的经验方法存在不可复制、不稳定等问题,难以满足现货交易、储能调度等精细化需求。落地建议采用“二层架构”:保留可解释的基线预测(如电网/厂家模型),叠加深度学习模型(如CNN-LSTM、Transformer)进行残差修正,优先处理短临波动再优化长时趋势。关键步骤包括数据清洗(剔除限电/停机时段)、多源气象融合及分场景建模。实践表明,该方法可稳定提升预测精度1%-3%,实现从“靠人”到“靠系统”的升级。原创 2025-12-15 09:15:45 · 125 阅读 · 0 评论 -
【光伏风测功率预测】AI 如何让风电场功率预测误差从 10% 下降8%?——含可直接落地的实战思路
风电预测误差从10%降至8%可带来显著收益,关键在于系统化解决四大误差源:气象误差(40-60%)、地形误差(10-20%)、机组偏差(10-20%)和数据质量(5-10%)。核心方法采用三层驱动:多源气象融合可降0.5-0.8%误差;多尺度分解降0.3-0.6%;AI残差修正降0.8-1.2%,最终可实现1.8-2.8%的总体提升。实战流程包括建立基线预测、残差建模、分量处理及持续监控。案例显示该方法能将nRMSE从10.1%降至8.2%,减少考核损失40-70万元。这证明精准预测需要完整的工程体系而非单原创 2025-12-14 09:06:20 · 62 阅读 · 0 评论 -
【光伏风测功率预测】风电光伏还能提升多少预测精度?一文看懂技术路线与“天花板”
风电光伏功率预测精度提升空间与技术路径分析 摘要:当前风电光伏功率预测已从"有无"转向精度提升阶段。研究表明,单风电场日内预测nRMSE可从9-12%提升至7-8.5%,光伏电站可从10-15%优化到8-10%,区域汇总预测因平滑效应可获得更低误差。技术升级路径包括:多源气象融合、统计订正、多尺度分解与深度学习模型应用。但受限于气象不确定性(占误差40-60%)、数据质量和设备状态等因素,单站nRMSE稳定低于6%面临物理极限。建议不同主体采取差异化策略:基础系统可争取1-2%提升,先进原创 2025-12-13 12:12:21 · 47 阅读 · 0 评论 -
【光伏风电功率预测】功率预测提升 1–2% 有多值钱?——算一笔风电 + 光伏偏差考核和备用成本的真账
提升新能源功率预测精度1-2%的经济价值显著。以200MW风电场为例,nRMSE从9%降至8%可年省45万元偏差考核费用;100MW光伏电站nRMSE降低1.5%可节省20多万元。对于800MW风光基地,预测提升1-2个百分点可带来300-500万元/年的综合收益,包括减少偏差考核、降低备用成本及交易策略优化收益。投资预测系统年成本约几十万元,回收期通常在1年内。随着新能源占比提升,精准预测将带来长期竞争优势和更大市场机会。原创 2025-12-12 10:08:46 · 154 阅读 · 0 评论 -
【光伏风电功率预测】不仅是天气预报:多模式融合气象场 + 风光功率预测的一体化解决方案
新能源功率预测需气象与建模协同优化 当前新能源项目存在单纯依赖天气预报数据而预测效果不佳的问题,其核心在于缺乏气象数据与功率预测的完整链路。文章提出一体化解决方案,包含四大关键环节:多源气象数据融合、地形订正与动态权重分配、AI功率建模(分风电/光伏不同模型)、分位数预测输出。该方案通过闭环优化直接降低偏差考核风险,提升交易收益,而非单纯追求气象数据精度。实施路径建议从试点评估到规模化推广,最终实现从原材料级天气预报到成品级预测服务的转化,为电站运营、电网调度和电力交易提供更精准的决策支持。原创 2025-12-11 17:34:12 · 122 阅读 · 0 评论 -
【光伏风电功率预测】从“经验曲线”到“数据驱动”:怎么用 AI 预测模型帮你多赚交易收益?
新能源电力交易正从经验驱动转向数据驱动。传统"晴天按历史曲线、阴天打系数"的经验预测方式在现货市场和偏差考核环境下已显不足,导致高价不敢报、低价太保守。数据驱动的AI预测模型通过整合多源气象数据、设备运行数据和交易历史,采用STL-VMD分解和Informer-LSTM等算法进行残差修正,不仅能提供更精准的P50基线预测,还能输出P30/P70置信区间,实现风险收益量化决策。实践证明,将预测误差降低1.5个百分点,可为300MW风光项目带来每年百万元级的收益提升。建议从单站试点入手,通过原创 2025-12-11 09:32:16 · 159 阅读 · 0 评论 -
【光伏风电功率预测】偏差考核每月少几十万:STL-VMD + Informer-LSTM 在某基地的落地案例
摘要:某风光一体化基地通过STL-VMD二次分解与Informer-LSTM并行残差模型,在不推翻现有预测系统的情况下,将风光功率预测的综合nRMSE降低了1.2-1.5个百分点。该方案通过分解预测误差为多个子序列,并采用不同模型处理各频段特征,显著改善了关键时段的预测精度。实施后,风电nRMSE从9.0%降至7.6%,光伏从10.2%降至8.8%,每月减少偏差考核费用30-50万元。项目经验表明,数据质量优化、参数调优及与业务目标对齐是关键成功因素,该技术路线具有可复制性,为风光基地预测精度提升提供了有效原创 2025-12-10 11:38:47 · 156 阅读 · 0 评论 -
【风电功率预测服务】如何让风电场 nRMSE 再降 1%?——基于多源气象 + 深度学习的实战方案
风电功率预测精度提升1%可带来显著经济效益。针对现有预测系统瓶颈,提出"多源气象+深度学习"的残差修正方案:通过融合多模式气象数据和SCADA信息,采用STL/VMD分解将误差拆分为多尺度分量,分别用Informer处理长期天气趋势、CNN-BiLSTM处理短期波动。实践表明,该方法可使200MW风电场nRMSE降低1-1.5个百分点,年节省考核费用达数十万元。该方案可作为预测服务提供,在不推翻现有系统基础上实现精度突破。原创 2025-12-09 09:29:15 · 205 阅读 · 0 评论 -
【光伏风电功率预测】提高 1.2%:STL-VMD 二次分解 + Informer-LSTM 并行预测模型
摘要:本文提出一种针对风光功率预测"多1.2%"提升的精细建模方法。通过STL-VMD二次分解技术,先剥离日周期和趋势成分,再对残差进行窄带模态分解,将序列按频段划分。采用Informer处理低频长时依赖,LSTM建模高频局部扰动,最后重构预测结果。该方法通过信号层降维和模型层分工,有效解决了多时间尺度、强非平稳序列的预测难题。工程实践表明,该结构能稳定提升预测精度1.0%-1.3%,特别适用于区域风光场站的短期和日前预测场景。原创 2025-12-08 09:56:37 · 85 阅读 · 0 评论 -
【光伏风电功率预测】提高 1%:基于 CNN-BiLSTM-Attention 的回归预测模型
文章摘要:本文探讨在气象能源预测领域如何通过CNN-BiLSTM-Attention模型组合实现1%-2%的关键性能提升。在已有LSTM/GRU基线基础上,该架构通过CNN增强局部特征提取、BiLSTM捕获双向时序依赖、Attention聚焦关键时间步。重点强调提升策略包括:损失函数与业务目标对齐、关键样本重采样、精细特征工程、时间切片验证和残差建模等工程细节。实验表明,这种系统化改进方法能在功率预测场景稳定获得显著经济效益,1%的nRMSE降低可能带来数百万收益。文章提供了从基线到新模型的完整实施路径,突原创 2025-12-04 09:47:43 · 48 阅读 · 0 评论 -
【光伏风电功率预测】基于 ICEEMDAN + MSCNN-BiGRU-Attention 的并行预测模型
本文提出一种基于ICEEMDAN分解与多尺度深度学习的光伏/风电功率并行预测框架。针对多能源、多时间尺度、强非平稳特性带来的建模挑战,该模型首先通过改进的ICEEMDAN算法将原始功率序列分解为不同频段的IMF分量;随后为每个IMF构建包含多尺度CNN、双向GRU和注意力机制的子模型,实现局部特征提取与时序依赖建模;最后通过并行预测与重构获得最终功率输出。实验表明,该方法能有效解决模式混叠问题,提升预测精度,并支持光伏/风电的独立或联合预测部署,适用于风光联合调度等工程场景。原创 2025-12-03 09:35:28 · 43 阅读 · 0 评论 -
【光伏风电功率预测】基于图神经网络的时间序列预测、分类模型 | 开源代码示例
在你现有的实践里,风电、光伏功率预测大多是建模:输入:某一个场站过去一段时间的风速、辐照度、功率等;输出:该场站未来的功率曲线。但实际电网和虚拟电厂场景中,同一风带上的多个风场,往往一起“起风”和“一起掉风”;同一云带扫过多个光伏场站,出力会有明显的空间传播效应;部分区域内风光互补特性明显:风弱时往往晴、光强,反之亦然。如果我们只用“每个点单独建模”的思路,就把这些浪费掉了。原创 2025-12-02 16:30:40 · 112 阅读 · 0 评论 -
【光伏风电功率预测】数据层融合 + CNN-LSTM-Transformer 的特征层融合功率建模
本文提出了一种光伏和风电功率预测的融合深度学习框架,通过"数据层融合+特征层融合"两阶段方法实现区域级多能互补预测。在数据层,统一处理SCADA、NWP等多源异构数据,实现时空对齐和特征工程;在特征层,采用CNN-LSTM-Transformer组合模型:CNN提取局部时空模式,LSTM建模中短期时序依赖,Transformer捕捉长时跨场站关联。该框架支持单站预测和区域总功率预测,通过模块化设计便于工程落地,相比传统单品种模型能更准确预测区域总出力曲线,为电网调度提供决策支持。原创 2025-12-02 09:23:58 · 191 阅读 · 0 评论 -
n8n AI高效工作流自动化 部署使用教程
摘要: n8n是一款开源可视化工作流自动化工具,结合AI能力可高效解决重复性任务。文章详细介绍了从Docker部署到实战应用的完整流程:1)通过Docker Compose自托管n8n,确保数据可控;2)以AI客服日报机器人为例,演示如何串联工单系统、ChatGPT和邮件通知,实现定时自动化;3)进阶搭建交互式AI助手,利用ToolsAgent节点调用业务API;4)整合向量数据库构建RAG知识库问答。关键建议包括:拆分复杂工作流、严格管理凭据、区分开发与生产环境,并建议从高频刚性需求(如日报生成)切入,逐原创 2025-12-01 17:08:47 · 145 阅读 · 0 评论 -
DooTask从入门到精通
DooTask是一款轻量级开源在线项目管理工具,提供任务管理、看板、文档、思维导图、即时通讯等全流程协作功能。核心优势包括任务闭环管理、信息集中存储和团队协同可视化。工具支持30分钟快速搭建工作空间,通过规范任务卡片、子任务拆分和多视图管理提升效率。内置文档工具和即时通讯功能实现信息与任务绑定,并提供模板化、标签化等经验复用机制。此外还整合OKR、审批、签到等管理模块,支持私有化部署和多端使用。建议团队坚持任务系统化、沟通任务化、定期复盘三条准则,将DooTask转化为基础效率设施。原创 2025-12-01 17:06:14 · 54 阅读 · 0 评论 -
新能源功率气象数据字典---标准字段 / 取值范围 / 单位 / 质量标记(示例规范)
本文提出了一套风电光伏功率预测气象数据字典设计方案,采用分层分模块架构,包含以下核心要素:1)统一命名规范(小写下划线格式);2)标准化时空字段(data_time、lead_time_hour、经纬度等);3)风电关键字段(不同高度风速风向、湍流强度、风切变指数);4)光伏关键字段(辐射分量、云量、温湿度);5)质量控制体系(4级QF标记机制)。方案提供完整的MySQL建表示例,支持多源数据融合,可快速落地到15分钟/5分钟预报系统,为功率预测模型提供标准化数据支撑。原创 2025-11-23 12:16:45 · 76 阅读 · 0 评论 -
风电场尾流与风切变 α:对功率曲线与预测误差的影响
摘要:随着大型风电机组和密集风场的普及,尾流效应和风切变已成为影响功率曲线和预测精度的关键因素。研究表明,尾流可导致下游机组功率损失20%-30%,而风切变指数α的时空变化会引入系统性偏差。文章系统分析了尾流和风切变对功率曲线的影响机理:尾流导致功率曲线变形和风向依赖性,风切变则引起功率高估或低估。在功率预测中,未显式处理这些因素会导致10%-35%的预测误差。建议在测试中采用多高度测量和LiDAR技术,在预测中引入α和尾流参数化模型,并利用SCADA数据进行持续校正,以提高预测精度和风场性能。原创 2025-11-23 12:11:31 · 109 阅读 · 0 评论 -
光伏组件面辐照估计:倾角、方位与遮挡
摘要: 光伏功率预测的核心在于准确计算组件接收的有效辐照(POA),其精度直接影响逆变器输入估计和功率预测误差。POA由直射、散射和地面反射三部分组成,需结合几何角度(AOI)、天空模型(如Perez/HDKR)及反照率动态修正。主要误差来源包括太阳角度偏差、DNI/DHI拆分误差、组件倾角/方位偏差、遮挡(固定/行间/局部)及反照率变化,其中遮挡和辐照分配误差对预测影响最大。工程推荐分级别模型(如Disc+HDKR或DIRINT+Perez),并需结合现场校准和动态参数优化,以实现高精度POA估算,为光伏原创 2025-11-21 09:30:31 · 76 阅读 · 0 评论 -
站点稀疏地区的外推策略:空间插值与地形修正
摘要:本文针对低观测密度区域的风光预测问题,提出了一套"空间插值+地形修正"的工程方法体系。通过整合ERA5/GFS等气象数据,采用Topo-Kriging等插值技术,并结合海拔、遮蔽效应等地形特征修正,构建了适用于山区、海上等复杂地形的预测框架。文章详细介绍了各类插值方法(双线性、IDW、克里金等)的适用场景,以及高度修正、风道加速等地形补偿策略,并给出了高山风电、荒漠光伏等典型场景的组合方案。最后提出了包含数据获取、插值处理、特征提取、修正校准的完整实施流程,为风光资源评估提供了可落原创 2025-11-21 09:26:50 · 76 阅读 · 0 评论 -
从 ERA5 / 再分析到商用服务:历史回算与回测方法
新能源功率预测评估体系构建方法论 本文系统阐述了基于ERA5再分析数据的新能源功率预测评估框架。核心内容包括:(1)利用ERA5的长期稳定性构建历史回算(Hindcast),验证模型在多年跨度的稳健性;(2)通过商用气象数据回测(Backtest)评估真实业务场景表现;(3)提出气象场统计特性偏差校准、时间变率补偿等迁移方法,解决ERA5到商用预报的转换问题。文章建立了包含绝对误差、偏差、稳定性三类指标的评估体系,并给出从零构建预测系统的五步工程流程。该方法论为新能源功率预测提供了从模型验证到商用落地的完整原创 2025-11-20 14:45:13 · 68 阅读 · 0 评论 -
风机切出与爬坡:极端天气下的提前量与阈值策略
摘要:风电功率在极端天气下易出现"断崖式下跌"和"陡峭式上升"现象,主要受阵风、风暴锋等天气影响。研究发现,风机集群响应速度远超预期,10分钟内功率波动可达40-70%。建立提前预警机制和阈值策略体系是实现风电场可控性的关键,包括三类提前信号识别(气象前沿、微结构变化、设备预报警)和分阶段主动管理策略(风险分级、分区控制、爬坡限制)。新型预测模型应关注风速微结构参数而非平均值,采用概率风险评估取代传统功率预测,实现从被动响应到主动调控的转变。原创 2025-11-20 14:42:43 · 89 阅读 · 0 评论 -
风机切出与爬坡:极端天气下的提前量与阈值策略
摘要:本文针对风电场运行中由极端天气引发的风机"切出"和"爬坡"问题展开研究。分析表明,风速波动、湍流强度及风切变是触发停机的主要因素,而现有预测模型存在对极端风速响应滞后等问题。研究提出预警指标体系(风速梯度、湍流指数、风切变)和工程控制策略(提前降载、分批停机等),建议建立5-30分钟提前预警机制,并量化停机/爬坡概率。通过主动管理极端天气下的风机负荷,可有效降低功率突变对电网稳定性的影响,提升风电场运行效益。原创 2025-11-19 11:54:00 · 77 阅读 · 0 评论 -
功率预测的偏差考核与 P50/P90 产能管理
摘要:随着新能源电站进入精细化运营阶段,功率预测已成为生产计划、调度交易和资产管理的关键工具。本文从偏差考核与P50/P90产能管理两个维度,分析了预测准确度对电网调度、交易收益和运营效率的影响,并系统介绍了四类核心评估指标(绝对误差、技能评分、偏差结构和运营指标)。同时阐述了P50/P90概率产能的定义及其在投融资、资产管理和电力交易中的应用,提出通过预测偏差构建产能分布的方法,最终构建了"预测-监测-建模-应用"的闭环管理体系,为新能源电站提升收益、降低偏差成本提供系统解决方案。(1原创 2025-11-19 11:51:59 · 134 阅读 · 0 评论 -
短临 Nowcast 在分布式光伏的落地:分钟级降水与云量对 Irradiance 的影响(工程版)
摘要:本文提出一种0-120分钟短时光伏功率预测方法,重点解决辐照度急剧下滑预警问题。系统融合雷达、卫星、地面观测等多源数据,通过光流算法跟踪云影移动,结合降水率与云基高度计算遮光概率,输出概率化预测结果。关键技术包括:1)时空数据分钟级对齐与500m网格处理;2)三段式预测架构(20分钟内光流跟踪+60分钟卫星平流+120分钟统计模型);3)概率校准与事件预警机制。系统可输出P10/P50/P90概率带,支持储能联动调度,关键指标包括CRPS、急降事件命中率等。方案强调工程落地,设计了数据流水线、容错机制原创 2025-11-14 13:31:07 · 316 阅读 · 0 评论 -
多模式融合(GFS/GRAPES/ICON/GEM)在新能源预测中的对比与加权(工程版)
摘要:本文提出了一套多模式风功率预测融合方案,通过整合GFS、GRAPES、ICON和GEM四套全球模式的工程经验画像,构建了基于季节/时段/扇区三维软切换的智能融合系统。方案采用"物理统计一致化+分位数校准"的双阶段处理,重点优化矢量一致性融合、Ramp感知门控和概率分位数融合。实施步骤从基线对齐到元学习Router分阶段上线,预计可降低NMAE/NRMSE 3-8%,提升Ramp指标5-15%,同时保证PICP可靠性偏差在±3%内。推荐优先实施包含季节化技能矩阵、余弦窗过渡和校准约束原创 2025-11-14 13:14:59 · 76 阅读 · 0 评论 -
多模式融合(GFS/GRAPES/ICON/GEM)在新能源预测中的对比与加权
摘要:多模式气象数据融合方法通过误差协方差加权、向量风融合和天气型门控等技术,有效提升风光功率预测精度。系统采用统一网格预处理、分层误差评估和动态权重调整策略,针对光伏链路在晴空指数层融合,风电链路在(u,v)分量融合,并引入季节平滑和功率端约束处理。工程实现需重点处理地形效应、协方差矩阵优化及异常值稳健统计,推荐以GFS/ICON/GRAPES等模式组合作为初始权重,通过历史数据重估和在线更新建立自适应融合体系。(149字)原创 2025-11-12 10:06:02 · 76 阅读 · 0 评论 -
光伏辐照度到功率:晴空模型、云运动与逆变器限幅的工程实践
摘要:光伏发电功率预测涉及"辐照度→组件温度→直流功率→交流功率"的传递链,核心挑战包括大气条件、云场演变和设备限幅。建议采用Ineichen-Perez晴空模型结合季节化修正,通过POA辐照度换算和PVWatts/SDM模型计算直流功率。短临预测推荐云运动向量外推法,需显式模拟逆变器限幅和电网策略。工程实现强调分层校准(传感器质控、温度系数修正等)和滚动更新机制,建立可用功率指标识别限功状态。关键要同步优化物理模型与运行质控,确保1-15分钟尺度的预测稳定性,并通过DOY核平滑处理季节原创 2025-11-12 10:00:41 · 74 阅读 · 0 评论 -
风电功率预测:从数值天气预报到场级修正(含 DOY 季节过渡与阵风处理)
风电功率预测是解决风电波动性并网挑战的关键技术。基于数值天气预报(NWP)作为物理基础,通过机器学习模型对NWP数据进行场级修正和统计后处理,构建精准预测体系。核心模型包括梯度提升树、随机森林和神经网络,结合关键特征工程(如周期性特征DOY处理和阵风识别)提升精度。预测流程涵盖超短期和短期尺度,并需要持续学习以适应环境变化。现代风电预测已成为融合物理模型、场站特性和数据驱动的系统工程,其精度取决于NWP质量、特征工程能力和机器学习模型的有效性。原创 2025-11-11 15:55:21 · 110 阅读 · 0 评论 -
Three.js开源分享:地球叠加数据效果实现与案例解析
本文介绍了使用Three.js实现地球模型数据可视化的方法。通过基础地球模型搭建、数据叠加技术和案例解析,展示了如何创建交互式3D地球可视化效果。文章详细说明了纹理加载、光源设置、飞线绘制等关键技术,并以全球航班可视化为例进行演示。随着WebGL技术的发展,这种可视化方式将在数据分析和展示领域发挥更大作用。原创 2025-10-28 17:42:54 · 96 阅读 · 0 评论 -
疾风气象大模型:技术特点与优势白皮书
摘要:疾风气象大模型实现风-光-雨-雪全要素高精度预报,融合多源数据与地形流场解译,提供15分钟至15天的多尺度预报产品。核心技术包括天气型驱动的动态融合、向量一致性风场处理、地形感知下采样及分位校准等,显著提升复杂地形和极端天气的预报准确性。系统支持概率化输出和业务决策,相比传统方案在准确性、稳定性和时效性上具有明显优势,为电力交易、运维安全等场景提供可靠支撑,两周可部署见效,六周达到稳定运行。原创 2025-10-23 10:14:16 · 492 阅读 · 0 评论 -
疾风气象大模型 4.0:赋能云南项目的高精度风-光-雨-雪一体化数据服务
《云南山地气象服务中的疾风4.0模型应用》 摘要:疾风气象大模型4.0在云南复杂地形气象服务中展现出显著优势。该模型通过多源数据融合、地形感知下采样和自适应校准技术,实现了15分钟至15天的高精度预报,覆盖风速、辐照度、降水等关键要素。在云南破碎地形和季风环境下,模型有效解决了传统预报在风场日变化、对流突变等方面的不足,MAE降低15%-30%,风向误差收敛至25°以内。项目采用"快速上线-持续优化"的三阶段实施策略,7天内完成基线验证,30天实现滚动校准,最终为电力交易、运维安全等场景原创 2025-10-23 10:11:28 · 469 阅读 · 0 评论 -
大模型预测气象的优点与优势(工程实战版)
气象大模型”(Large Weather Model, LWM)本质是:用深度网络学习大气演变规律,直接从历史再分析与观测推断未来多变量场(温度、风、降水、位势高度等),产出可与传统 NWP(IFS/GFS/WRF 等)对比的逐时—多层—全球/区域预报。原创 2025-10-22 09:58:36 · 249 阅读 · 0 评论 -
开源的预测气象大模型与数据获取/可视化
「开源气象大模型与数据获取指南」摘要: 当前主流AI气象模型(如ECMWF的AIFS、DeepMind的GraphCast、华为Pangu等)主要基于ERA5/HRES数据训练。开源资源可通过ECMWF OpenData、GitHub仓库及Google Cloud获取,其中AIFS数据采用CCBY-4.0许可可商用,其他模型多有限制性许可。典型应用流程包括:1)通过Python包获取实时预报数据;2)加载预训练权重进行推理;3)使用xarray/cartopy或Zarr进行可视化。训练数据可从CDS下载ER原创 2025-10-22 09:51:37 · 316 阅读 · 0 评论 -
虚拟电厂(VPP)在国内进度到哪了?怎么真正“赚到钱”|2025深度解读
国家明确虚拟电厂作为新型电力系统关键运营形态,2025年起可独立参与电力市场。核心盈利路径为:合规注册→验证响应能力→多市场变现(需求响应/现货/辅助服务)。各地细则陆续出台,山东、江苏等地已建立明确补偿机制,需求响应成为稳定现金流入口。发展重点包括资源聚合能力建设、基线验证及多市场协同策略,预计2030年全国虚拟电厂调节能力将达5000万千瓦级。当前需关注基线有效性判定、跨市场风险控制等关键环节,储能与负荷混合资源池将成为主流配置。原创 2025-10-21 09:22:32 · 337 阅读 · 0 评论
分享