问题一: 01背包问题
使装入背包中物品价值最大的情况。
物品数量为1问题,
编号 1 2 3 4
体积 2 3 4 5
价值 3 4 5 6
思路:建立如下图一个表,这个表
表为dp
dp[i][j] 表示使用物品编号<=i的物品所能放进背包容量为j的包中最大价值的情况。
首先dp[0][[j]和dp[i][0]初始化为0.
从(1,1)到(4,8)进行每行进行遍历处理
如背包1,1 背包容量1,物品1所最大价值。
当前物品i是否能够放进容量j大小背包中
1.放不进背包中,则前i个物品放到容器j和前i-1个物品放到容器j中的最佳组合最大价值相同。
2.能装入背包中,
2.1装入背包价值=背包容量j-物品i的体积的前i-1的最佳组合状况下价值即(i-1,j-i的体积)+当前物品i的价值
2.2不装入背包,则前i个物品放到容器j和前i-1个物品放到容器j中的最佳组合价值相同。
问题二:装入最大价值的物品是那些
回溯法:
判断表中当前dp[i][j]的值和dp[i-1][j]的值是否相等:
相等则背包中存在物品i转入dp[i-1][j-i的物品体积]
不相等则背包中不存在物品i,转入dp[i-1][j]
一直重复直到(0,0)