动态规划篇

参考

问题一: 01背包问题

使装入背包中物品价值最大的情况。
物品数量为1问题,
编号 1 2 3 4
体积 2 3 4 5
价值 3 4 5 6
思路:建立如下图一个表,这个表
表为dp
dp[i][j] 表示使用物品编号<=i的物品所能放进背包容量为j的包中最大价值的情况。

 首先dp[0][[j]和dp[i][0]初始化为0.
 从(11)到(48)进行每行进行遍历处理
 如背包11 背包容量1,物品1所最大价值。
当前物品i是否能够放进容量j大小背包中
	1.放不进背包中,则前i个物品放到容器j和前i-1个物品放到容器j中的最佳组合最大价值相同。
	2.能装入背包中,
		2.1装入背包价值=背包容量j-物品i的体积的前i-1的最佳组合状况下价值即(i-1,j-i的体积)+当前物品i的价值
		2.2不装入背包,则前i个物品放到容器j和前i-1个物品放到容器j中的最佳组合价值相同。

在这里插入图片描述
在这里插入图片描述

问题二:装入最大价值的物品是那些

回溯法:

判断表中当前dp[i][j]的值和dp[i-1][j]的值是否相等:
	相等则背包中存在物品i转入dp[i-1][j-i的物品体积]
	不相等则背包中不存在物品i,转入dp[i-1][j]
一直重复直到(00
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值