18、NumPy——矩阵库(Matrix)

NumPy 矩阵库(Matrix)

NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。

一个 的矩阵是一个由行(row)列(column)元素排列成的矩形阵列。

矩阵里的元素可以是数字、符号或数学式。以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:

1、matlib.empty()

matlib.empty() 函数返回一个新的矩阵,语法格式为:

1 numpy.matlib.empty(shape, dtype, order)

 

参数说明:

  • shape: 定义新矩阵形状的整数或整数元组
  • Dtype: 可选,数据类型
  • order: C(行序优先) 或者 F(列序优先)
1 import numpy.matlib
2 import numpy as np
3 print(np.matlib.empty((2, 2)))
4 # 填充为随机数据

 

执行结果:

[[6.23042070e-307 1.42417221e-306]
 [1.37961641e-306 1.11261027e-306]]

2、numpy.matlib.zeros()

numpy.matlib.zeros() 函数创建一个以 0 填充的矩阵。

1 import numpy.matlib
2 import numpy as np
3 print(np.matlib.zeros((2, 2)))

 

执行结果:

[[0. 0.]
 [0. 0.]]

 

3、numpy.matlib.ones()

numpy.matlib.ones()函数创建一个以 1 填充的矩阵。

1 import numpy.matlib 
2 import numpy as np 
3  
4 print (np.matlib.ones((2,2)))

 

执行结果:

[[1. 1.]
 [1. 1.]]

 

4、numpy.matlib.eye()

numpy.matlib.eye() 函数返回一个矩阵,对角线元素为 1,其他位置为零。

numpy.matlib.eye(n, M,k, dtype)

 

参数说明:

  • n: 返回矩阵的行数
  • M: 返回矩阵的列数,默认为 n
  • k: 对角线的索引
  • dtype: 数据类型
1 import numpy.matlib 
2 import numpy as np 
3  
4 print (np.matlib.eye(n =  3, M =  4, k =  0, dtype =  float))

 

执行结果:

[[1. 0. 0. 0.]
 [0. 1. 0. 0.]
 [0. 0. 1. 0.]]

5、numpy.matlib.identity()

numpy.matlib.identity() 函数返回给定大小的单位矩阵。

单位矩阵是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为 1,除此以外全都为 0。

1 import numpy.matlib 
2 import numpy as np 
3  
4 # 大小为 5,类型位浮点型
5 print (np.matlib.identity(5, dtype =  float))

 

执行结果:

[[ 1.  0.  0.  0.  0.] 
 [ 0.  1.  0.  0.  0.] 
 [ 0.  0.  1.  0.  0.] 
 [ 0.  0.  0.  1.  0.] 
 [ 0.  0.  0.  0.  1.]]

6、numpy.matlib.rand()

numpy.matlib.rand() 函数创建一个给定大小的矩阵,数据是随机填充的。

1 import numpy.matlib 
2 import numpy as np 
3  
4 print (np.matlib.rand(3,3))

 

执行结果:

1 [[0.23966718 0.16147628 0.14162   ]
2  [0.28379085 0.59934741 0.62985825]
3  [0.99527238 0.11137883 0.41105367]]

矩阵总是二维的,而 ndarray 是一个 n 维数组。 两个对象都是可互换的。

 1 import numpy as np
 2 x = np.matrix('1,2;3,4')
 3 y = np.array([[1, 2],
 4               [3, 4]])
 5 print('矩阵x:\n', x, type(x))
 6 print('ndarray y:\n', y, type(y))
 7 # 相互转换
 8 z = np.asmatrix(y)
 9 print('z:', type(z))
10 u = np.asmatrix(x)
11 print('U:', type(u))

 

执行结果:

矩阵x:
 [[1 2]
 [3 4]] <class 'numpy.matrix'>
ndarray y:
 [[1 2]
 [3 4]] <class 'numpy.ndarray'>
z: <class 'numpy.matrix'>
U: <class 'numpy.matrix'>

 

转载于:https://www.cnblogs.com/weststar/p/11592811.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值