NumPy 矩阵库(Matrix)
NumPy 中包含了一个矩阵库 numpy.matlib,该模块中的函数返回的是一个矩阵,而不是 ndarray 对象。
一个 的矩阵是一个由行(row)列(column)元素排列成的矩形阵列。
矩阵里的元素可以是数字、符号或数学式。以下是一个由 6 个数字元素构成的 2 行 3 列的矩阵:
1、matlib.empty()
matlib.empty() 函数返回一个新的矩阵,语法格式为:
1 numpy.matlib.empty(shape, dtype, order)
参数说明:
- shape: 定义新矩阵形状的整数或整数元组
- Dtype: 可选,数据类型
- order: C(行序优先) 或者 F(列序优先)
1 import numpy.matlib 2 import numpy as np 3 print(np.matlib.empty((2, 2))) 4 # 填充为随机数据
执行结果:
[[6.23042070e-307 1.42417221e-306]
[1.37961641e-306 1.11261027e-306]]
2、numpy.matlib.zeros()
numpy.matlib.zeros() 函数创建一个以 0 填充的矩阵。
1 import numpy.matlib 2 import numpy as np 3 print(np.matlib.zeros((2, 2)))
执行结果:
[[0. 0.]
[0. 0.]]
3、numpy.matlib.ones()
numpy.matlib.ones()函数创建一个以 1 填充的矩阵。
1 import numpy.matlib 2 import numpy as np 3 4 print (np.matlib.ones((2,2)))
执行结果:
[[1. 1.]
[1. 1.]]
4、numpy.matlib.eye()
numpy.matlib.eye() 函数返回一个矩阵,对角线元素为 1,其他位置为零。
numpy.matlib.eye(n, M,k, dtype)
参数说明:
- n: 返回矩阵的行数
- M: 返回矩阵的列数,默认为 n
- k: 对角线的索引
- dtype: 数据类型
1 import numpy.matlib 2 import numpy as np 3 4 print (np.matlib.eye(n = 3, M = 4, k = 0, dtype = float))
执行结果:
[[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.]]
5、numpy.matlib.identity()
numpy.matlib.identity() 函数返回给定大小的单位矩阵。
单位矩阵是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为 1,除此以外全都为 0。
1 import numpy.matlib 2 import numpy as np 3 4 # 大小为 5,类型位浮点型 5 print (np.matlib.identity(5, dtype = float))
执行结果:
[[ 1. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0.] [ 0. 0. 1. 0. 0.] [ 0. 0. 0. 1. 0.] [ 0. 0. 0. 0. 1.]]
6、numpy.matlib.rand()
numpy.matlib.rand() 函数创建一个给定大小的矩阵,数据是随机填充的。
1 import numpy.matlib 2 import numpy as np 3 4 print (np.matlib.rand(3,3))
执行结果:
1 [[0.23966718 0.16147628 0.14162 ] 2 [0.28379085 0.59934741 0.62985825] 3 [0.99527238 0.11137883 0.41105367]]
矩阵总是二维的,而 ndarray 是一个 n 维数组。 两个对象都是可互换的。
1 import numpy as np 2 x = np.matrix('1,2;3,4') 3 y = np.array([[1, 2], 4 [3, 4]]) 5 print('矩阵x:\n', x, type(x)) 6 print('ndarray y:\n', y, type(y)) 7 # 相互转换 8 z = np.asmatrix(y) 9 print('z:', type(z)) 10 u = np.asmatrix(x) 11 print('U:', type(u))
执行结果:
矩阵x: [[1 2] [3 4]] <class 'numpy.matrix'> ndarray y: [[1 2] [3 4]] <class 'numpy.ndarray'> z: <class 'numpy.matrix'> U: <class 'numpy.matrix'>