- 博客(858)
- 收藏
- 关注
原创 【Wandb】Linux环境下通过Docker部署Wandb教程
本文详细介绍了在Linux系统中使用Docker安装和配置Wandb(Weights & Biases)的过程。主要内容包括:前期准备(代理设置、许可证注册、Docker检查)、通过Docker镜像部署Wandb服务、验证容器运行状态,以及Python环境的配置测试。安装过程中遇到多个依赖问题(缺少Go、Rust环境等),通过逐步解决这些依赖最终完成安装,并通过离线模式测试验证了Wandb的功能。文章提供了完整的命令行操作流程和问题解决方案,适合需要在容器化环境中使用Wandb的用户参考。
2025-12-30 10:00:17
1037
原创 【wandb】wandb基础介绍
Wandb(Weights and Biases)是一个用于机器学习实验追踪、可视化和协作的强大工具。它可以帮助开发者记录超参数、训练指标和模型性能,并提供自动可视化功能。安装简单,通过pip install wandb即可完成。使用时需初始化wandb.init()并定期调用wandb.log()记录数据,最后用wandb.finish()结束实验。Wandb还支持超参数优化、模型版本控制等高级功能。最佳实践包括清晰命名实验、控制日志频率和监控硬件资源。其工作原理是通过API将本地训练数据上传云端,便于团
2025-12-30 09:59:10
1480
原创 【Docker】Unable to find image ‘hello-world latest‘ locally docker Error response from daemon
本文记录了解决Docker网络问题的综合方案。作者通过多种配置组合成功解决了问题,包括:1)设置系统代理,配置虚拟机代理地址;2)添加国内镜像源;3)修改DNS配置;4)重启Docker服务。虽然不确定具体是哪个步骤起了作用,但最终成功解决了问题。文中提供了详细的配置文件修改内容和操作步骤,并附上了成功前后的对比截图。该方法适用于在代理环境下遇到的Docker网络连接问题。
2025-12-29 09:23:43
707
原创 【论文笔记】A Survey on Data Synthesis and Augmentation for Large Language Models
本文综述了大型语言模型(LLM)中的数据合成与增强技术,探讨其在LLM全生命周期中的应用。随着高质量训练数据的增长速度远低于模型需求,数据耗尽危机日益凸显。文章系统梳理了两类主要方法:数据增强(包括标注、重构和协同标注)和数据合成(通用/领域模型蒸馏及模型自我提升)。这些技术被应用于数据准备、预训练、微调、指令调整和偏好对齐等阶段,有效提升了模型性能和数据效率。同时,文章指出了当前方法的局限性,并展望了未来研究方向,为LLM开发中的数据生成策略选择提供了指导。
2025-12-29 08:56:31
4787
1
原创 【开发工具】Docker常用操作
本文介绍了Docker的常用操作,包括容器管理(创建/查看/停止容器)、镜像管理(拉取/查看/删除镜像)、网络与数据管理(自定义网络/数据卷)、Docker Compose操作(配置文件编写/服务启停)以及高级技巧(镜像优化/日志调试)。提供了错误示例及调试方法,并以Flask+MySQL项目为例演示实际应用。内容涵盖Docker基础到进阶使用,适合开发者快速掌握Docker核心功能。
2025-12-27 18:55:50
2964
3
原创 【开发工具】Docker基础知识
Docker是一个开源的容器化平台,能够将应用及其依赖打包到标准化容器中运行。本文介绍了Docker的基础知识,包括容器与虚拟机的区别、安装配置方法(以Linux为例)、容器基本操作(创建/查看/停止)、镜像管理(拉取/构建)、网络与存储管理、以及Docker Compose多容器编排工具的使用。文中提供了正确命令示例和常见错误调试方法,并包含一个Flask+Redis的实际项目案例,展示如何通过Dockerfile和docker-compose.yml文件构建容器化应用。最后指出部分内容由AI生成并经人工
2025-12-27 18:54:59
1877
原创 GDN:深度学习时代的图偏差网络异常检测全解析
GDN(Graph Deviation Network)是 2020 之后迅速在 AIOps 场景爆火的算法之一,专门用于多变量时序异常检测(Multivariate Time-Series Anomaly Detection,MTSAD)。真实系统中的指标不是孤立的。CPU 100% → IO wait 上升 → load 飙高 → response time latency 变差这些指标之间有隐含依赖关系,而 GDN 就是专门用 “图” 来建模这些关联。
2025-12-25 16:38:17
6022
2
原创 【Django】Django 调用外部 Python 程序的完整指南
本文详细介绍了Django调用外部Python程序的三种方法:直接import调用、subprocess启动进程和使用异步任务框架。重点演示了通过subprocess启动CPU压力脚本的完整项目实践,包括视图函数编写、路径处理和前端交互。文章还总结了常见错误(如路径问题、进程阻塞)、调试技巧(日志记录、进程检查)以及生产环境优化建议(加锁机制、数据库选择)。最后解释了Django不适合直接运行长任务的原理,并强调subprocess是最常用的解决方案。该指南为开发者在Django中集成外部脚本提供了实用参考
2025-12-25 16:35:57
1770
1
原创 进程亲和力,让你的 CPU 调度变得“听话”的秘密机制
摘要: 进程亲和力(CPU Affinity)通过将进程或线程绑定到指定CPU核心运行,避免多核间调度导致的缓存失效、性能抖动等问题,提升实验可重复性和系统稳定性。文章解析了其原理(如CPU掩码、NUMA拓扑)、正确绑定方法及调试技巧,并指出常见错误(如单核过载)。实际应用涵盖高频交易、视频渲染等场景,是优化CPU调度、增强AIOps数据可靠性的关键技术。通过合理配置,可显著降低延迟波动并精准控制负载分布。
2025-12-24 13:16:34
1634
原创 【Docker】Unable to find image ‘hello-world latest‘ locally docker Error response from daemon Get
本文记录了解决Docker配置问题的过程。虽然具体报错原因未明确,但通过多种方法组合成功解决问题:1)设置系统代理地址;2)配置虚拟机代理环境变量;3)添加多个国内镜像源;4)修改DNS配置;5)重启Docker服务。最终通过curl测试代理成功,并附上问题解决前后的对比截图。作者表示不确定具体哪个方法起效,但组合使用这些配置后问题得到解决。
2025-12-11 16:52:02
979
原创 Linux下的Docker安装教程
本文详细介绍了在Linux系统(CentOS)上安装Docker的完整步骤,包括系统检查、YUM安装、服务启动及验证方法。提供了Docker常用命令(容器管理、镜像操作)和高级技巧(Docker Compose、日志调试),并演示了一个Flask+Redis的实际项目应用案例。文章还解释了Docker基于cgroups和namespaces的工作原理,以及安装过程中常见问题的解决方案。通过本教程,读者可以快速掌握Docker的安装配置和基本使用方法。
2025-12-11 15:44:11
1320
原创 Docker基础知识
Docker是一个开源的容器化平台,能够将应用及其依赖打包到标准化容器中运行。本文介绍了Docker的基础知识,包括安装配置、容器操作、镜像管理、网络存储等核心功能。通过示例演示了常用命令的正确用法和常见错误的调试方法,并提供了Flask+Redis项目的实际案例。文章还涵盖了Docker Compose多容器管理、镜像优化等高级技巧。Docker基于Linux内核的cgroups和namespaces技术实现资源隔离,相比虚拟机更加轻量高效。
2025-12-11 12:02:09
1199
原创 GDN:深度学习时代的图偏差网络异常检测全解析
GDN(Graph Deviation Network)是 2020 之后迅速在 AIOps 场景爆火的算法之一,专门用于多变量时序异常检测(Multivariate Time-Series Anomaly Detection,MTSAD)。真实系统中的指标不是孤立的。CPU 100% → IO wait 上升 → load 飙高 → response time latency 变差这些指标之间有隐含依赖关系,而 GDN 就是专门用 “图” 来建模这些关联。
2025-12-11 10:40:39
716
原创 【Django】Django 调用外部 Python 程序的完整指南
本文详细介绍了Django调用外部Python程序的三种方法:直接import调用、subprocess启动进程和使用异步任务。重点通过CPU负载脚本项目实战,展示了如何使用subprocess启动独立进程,避免阻塞Django。文章还提供了常见错误排查、调试技巧和生产环境建议,如日志记录、进程锁和数据库选择。最后解释了Django不适合长任务的原因及subprocess的优势,为开发AIOps等需要后台运行脚本的场景提供了完整解决方案。
2025-12-11 10:39:20
1713
原创 【进程亲和力】让你的 CPU 调度变得“听话”的秘密机制
摘要: 进程亲和力(CPU Affinity)通过将进程或线程绑定到指定CPU核心,避免多核间调度带来的缓存失效、性能抖动等问题,提升实验可重复性和系统稳定性。文章解析了进程/线程亲和力原理及CPU掩码机制,提供Python绑定核心的代码示例,并警示错误绑定可能导致性能下降。结合实际场景(如高频交易、AIOps),探讨了NUMA拓扑、调度策略等高级优化技巧,强调该机制在实验和生产环境中的价值,为CPU密集型任务提供精准控制方案。
2025-12-10 10:04:40
780
原创 LaTeX 常见语法大全:从入门到高级实战
本文系统介绍LaTeX语法从基础到高级的完整知识体系,包含最小可运行示例、文本排版、数学公式、表格、图片插入、文献引用等核心功能。重点讲解常见错误调试技巧,如大括号匹配、路径格式、空行处理等典型问题。提供学术论文模板示例,并对比pdfLaTeX、XeLaTeX和LuaLaTeX三种引擎的优缺点。适合需要撰写科技论文或技术文档的用户学习参考,帮助读者从基础使用进阶到专业排版水平。
2025-12-09 15:29:38
788
原创 Windows 环境下 LaTeX 的安装配置教程
本文详细介绍了Windows系统下LaTeX环境的安装配置方法,推荐使用MiKTeX+VS Code+LaTeX Workshop的组合方案。主要内容包括:MiKTeX的安装与自动宏包管理功能、VS Code编辑器的配置技巧、中文文档处理方案(XeLaTeX+ctex模板)、项目文件结构管理建议,以及常见错误排查方法。文章特别针对Windows用户常见的中文支持、宏包缺失等问题提供了解决方案,并对比了不同编译器的优缺点,推荐XeLaTeX作为最稳定的选择。教程包含图文步骤和代码示例,适合LaTeX初学者参考
2025-12-09 10:24:48
688
原创 【模型与算法】Isolation Forest、Local Outlier Factor、One-Class SVM 三者系统对比与实战指南
摘要: Isolation Forest、Local Outlier Factor(LOF)和One-Class SVM是异常检测领域的三大基础模型,分别适用于不同场景。Isolation Forest通过随机切割快速识别异常,适合大规模数据;LOF基于局部密度检测异常,对低维数据敏感;One-Class SVM利用高维核函数划定边界,适合小规模高维数据。本文通过代码示例对比三者的性能,指出常见调参陷阱(如OCSVM的nu参数和LOF的n_neighbors设置),并给出实际应用建议:生产环境优先选择Iso
2025-12-09 08:12:45
766
原创 【论文笔记】《Improving action segmentation via explicit similarity measurement》
本文提出了一种基于显式相似性度量的动作分割方法ASESM,通过多分辨率特征提取和相似性投票提高初始预测精度,并设计迭代边界校正算法优化动作边界。监督学习框架采用多编码器结构,结合边界校正与片段平滑技术,在50Salads等数据集上验证了有效性。同时提出完全无监督的边界检测方法,仅依赖特征相似性无需训练。该方法解决了现有技术过度依赖逐帧分类和缺乏边界验证机制的问题,显著提升了动作分割性能。
2025-12-08 14:22:55
7438
原创 【算法与模型】One-Class SVM 异常检测全解析:原理、实例、项目实战与工程经验
One-Class SVM是一种经典的异常检测算法,特别适用于正常样本占绝大多数且难以获取足够异常样本的场景。本文全面解析其原理、应用和工程实践:首先介绍核心思想,通过核函数映射数据并建立正常边界;然后展示正确示例与常见错误(如参数失配、未标准化数据);提供实用调试技巧如标准化、网格搜索参数、绘制决策边界;通过CPU时序数据检测实战演示应用;分享工程经验如定期重训练、结果平滑处理;最后解析数学原理与核函数选择。文章涵盖理论到实践,适合课程论文、AIOps项目及生产监控系统参考。
2025-12-08 14:22:24
989
原创 【模型与算法】LOF(Local Outlier Factor)详解:原理、实例、项目实战与工程经验全解
摘要: LOF(Local Outlier Factor)是一种基于局部密度对比的异常检测算法,适用于簇状分布或密度变化明显的数据。其核心思想是通过计算点的k距离、可达距离和局部可达密度,量化异常程度(LOF>1为异常)。文章通过二维数据示例展示了LOF的检测效果,并分析了误判场景(如密度差异大的簇或高维数据)。实战部分以CPU使用率检测为例,演示了LOF在时序异常中的应用。此外,还介绍了滑动窗口、模型融合等优化技巧,以及AIOps中的工程经验(如定期重训练、阈值报警)。LOF因其可解释性和密度敏感性
2025-12-08 14:20:36
682
原创 【算法与模型】Isolation Forest:原理解析、实战案例与工程经验全指南
本文全面解析了Isolation Forest(孤立森林)异常检测算法。其核心思想是通过随机切分快速隔离异常点,具有训练速度快、对高维数据友好等优势。文章通过Python示例演示了基础应用和常见误判场景,并提供了调试技巧。重点展示了一个基于CPU使用率的完整实战项目,包括数据模拟、异常检测和可视化分析。最后分享了提升模型稳定性的高级技巧和工程实践经验,如滑动窗口处理时序数据、模型组合等。该算法适用于AIOps、金融风控等领域,是异常检测的实用入门选择。
2025-12-06 13:44:10
1562
原创 加州房价数据基线模型实战报告
本报告以加州房价数据集为例,展示了机器学习基线模型的构建与分析流程。首先介绍了基线模型的概念及其重要性,随后对数据集进行了探索性分析,发现房价呈右偏分布且与收入显著相关。数据预处理包括特征标准化和数据集划分。构建了三种基线模型:均值预测(MSE=1.28,R²=0)、中位数预测(MSE=1.25,R²=0.01)和线性回归(MSE=0.56,R²=0.60)。可视化显示线性回归能捕捉特征与房价的线性关系。最后与随机森林(R²=0.81)和梯度提升树(R²=0.83)对比,验证了复杂模型的有效性。该流程为后续
2025-12-06 10:11:40
1392
原创 语义网络描述详解
本文介绍了语义网络(Semantic Network)这一知识表示方法。语义网络通过节点表示概念、边表示关系,以图形化方式组织和表达知识。文章详细说明了语义网络的基本元素(节点和边)、常见关系类型(如类属、属性、行为关系)及其推理机制(继承和关联推理)。同时对比了图形化和三元组两种表示方法,分析了语义网络的优缺点。最后通过Python代码示例演示了如何构建简单语义网络,并概述了其在AI领域的应用场景,如知识图谱、自然语言处理等。语义网络作为知识表示的基础方法,虽然存在表达复杂逻辑的局限性,但在现代智能系统中
2025-12-05 14:19:43
1210
原创 人工智能中表示和解决问题的基本思想
本文介绍了四种人工智能问题求解方法:1)状态空间法通过状态转换寻找解路径,适用于游戏求解和路径规划;2)问题归约法将复杂问题分解为子问题,用于任务规划和定理证明;3)谓词逻辑法用形式化逻辑表示知识,支持精确推理;4)语义网络法以图结构表达概念关系,适合知识表示。这些方法可分为两类:前两者侧重"如何解题"(搜索与分解),后两者侧重"如何表达知识"(逻辑与语义)。它们各具特点,常组合使用,共同实现计算机模拟人类智能的目标。
2025-12-05 12:23:53
969
原创 【AI前沿】2025年人工智能最新研究热点全景解析
多模态AI是指能够同时理解和处理来自不同感官的信息(如文字、语音、图像、视频、动作信号)的人工智能系统。AI Agent 是指能自主规划、执行任务并持续学习的智能体。拥有目标(Goal)制定计划(Plan)执行行动(Act)反思并改进(Reflect)联邦学习是一种分布式机器学习方法,允许多个设备或机构在不共享数据的情况下协同训练模型。2025年,多个国家已经出台AI治理法规,如欧盟《AI Act》、中国《生成式AI管理办法》。AI系统不只是技术问题,更是社会系统的一部分。
2025-12-05 12:22:39
1683
1
原创 【轻量拓展区】网络 QoS 与带宽、延迟、抖动:AI 推理的性能瓶颈
本文探讨了网络QoS(服务质量)对AI推理性能的影响。在AI推理场景中,带宽、延迟、抖动和丢包等网络因素可能成为主要性能瓶颈,而非计算资源本身。文章详细解析了各项QoS指标的实际影响,并提供Python工具代码用于监测网络质量。同时给出了优化建议,如边缘计算、数据压缩、专用网络通道等。最后指出,理解并优化网络QoS是构建稳定AI系统的关键,尤其在实时性要求高的应用中更为重要。
2025-12-04 15:34:58
1329
原创 【轻量拓展区】常见网络故障排查:DNS炸了还是端口被断了?
网络问题并不可怕,可怕的是不知道从哪里查起。如何识别 DNS 故障如何判断端口被封如何快速定位链路问题如何区分服务器挂了 vs 限频被封如何用脚本自动化诊断这些能力无论在 AIOps、云监控、后端开发还是日常运维中,都会长期受益。本文部分内容由 AI 辅助生成,并经人工整理与验证,仅供参考学习,欢迎指出错误与不足之处。
2025-12-04 10:27:40
1182
原创 【轻量拓展区】PING、Traceroute:网络调试工具的工作方式
PING 和 Traceroute 看似原始,却永不过时,它们像两种古老又强大的“网络感知能力”。现代的云监控、AIOps 系统其实仍依赖它们来采集可达性、延迟和路径信息。理解它们的工作方式,是你未来学习 AIOps、网络监控、时序预测等方向的重要基础。它们看似简单,却引向广阔的网络世界。本文部分内容由 AI 辅助生成,并经人工整理与验证,仅供参考学习,欢迎指出错误与不足之处。
2025-12-04 10:20:23
1120
原创 【轻量拓展区】DHCP、ICMP、IGMP:局域网生存必备的小协议
本文介绍了局域网中三个关键协议:DHCP用于自动分配IP地址,通过四次握手完成配置分配;ICMP作为网络诊断工具,通过ping和traceroute检测连通性;IGMP管理组播通信,支持视频会议等应用。文章包含协议工作原理、常见问题排查方法及实用调试技巧,并提供了Python实现示例(DHCP监听器、ICMP Ping和组播接收)。这些协议是TCP/IP网络的基础组件,深入理解有助于解决复杂网络问题。
2025-12-03 16:59:45
1276
原创 【网络与 AI 工程的交叉】多模态模型的数据传输特点:视频、音频、文本混合通道
摘要 本文探讨了多模态模型数据传输的特点,分析了视频、音频和文本三种数据类型的传输特性。文本数据轻量级且易于压缩;音频数据对延迟敏感,适合流式传输;视频数据带宽需求大,需特殊处理。文章提供了工程实践建议,包括使用WebRTC传输音视频、边缘节点抽帧、动态码率控制等优化方法,并指出多模态通信需采用异步、多路、批处理等技术。最后展望了未来发展方向,强调AI服务将融合通信工程与GPU工程技术。
2025-12-03 16:57:17
1511
原创 【网络与 AI 工程的交叉】边缘计算 vs 云:延迟如何限制模型部署位置
模型部署不是“云好还是边缘好”的简单选择题,而是一个建立在“延迟预算”的工程决策。当你理解了延迟,理解了网络,就能设计出真正稳定、高效的 AI 系统。未来,随着 5G、卫星通信和更多 MEC 基站的部署,边缘与云的界限会越来越模糊。但延迟永远是那条看不见的物理法则,决定你的模型最终能被运行在哪里。
2025-12-02 17:21:42
1365
原创 【网络与 AI 工程的交叉】视频流传输协议:RTMP、HLS、WebRTC 解析
协议延迟典型应用优点缺点RTMP1~2s推流到直播服务器实时性好、广泛支持浏览器不原生支持HLS6~30s大规模分发、点播CDN 友好、稳定延迟高WebRTC0.03~0.1s视频会议、实时推理真·低延迟、浏览器原生实现复杂、需要 TURNRTMP → GPU 推理:适合直播场景WebRTC → GPU 推理:适合实时互动 AIHLS → 推理结果展示:适合大量用户访问页面。
2025-12-02 15:47:17
1375
原创 【网络与 AI 工程的交叉】深度学习推理服务通信链路:从客户端到 GPU 节点
本文探讨了深度学习推理服务的通信链路,从客户端请求到GPU执行的全流程。文章详细解析了各环节(客户端、API网关、负载均衡、推理框架、GPU Worker)的优化策略与常见问题,包括gRPC调用、Nginx配置、Triton动态批处理等关键技术。通过正面示例和错误案例对比,提供了CPU解码瓶颈、显存爆炸等问题的调试技巧和解决方案。最后给出完整的项目实战示例,并总结了常见性能瓶颈及应对措施,为构建高效推理服务提供实用指导。
2025-12-02 11:55:30
1210
原创 【网络与 AI 工程的交叉】分布式训练通信堆栈解析:NCCL、gRPC、RDMA(含示例与实战)
本文解析了分布式AI训练中的三大核心通信技术:NCCL、gRPC和RDMA。NCCL作为GPU间通信库,负责高效的参数同步;gRPC处理控制面消息;RDMA实现高速网络传输。文章通过正反示例展示了它们的应用场景,如NCCL的AllReduce操作、gRPC的服务调用优化、RDMA的性能调试技巧,并提供了PyTorch多机训练配置方案。最后指出通信瓶颈是限制大模型扩展的关键因素,强调掌握这些技术对AI工程实践的重要性。
2025-12-02 09:51:10
1539
原创 【网络与 AI 工程的交叉】为什么大模型训练会受网络带宽限制?AllReduce 与参数同步
摘要: 大模型训练的瓶颈往往不是GPU算力,而是网络带宽。梯度同步阶段(AllReduce操作)在多卡训练中占据80%的时间成本。AllReduce通过环形拓扑高效传输数据,但GPU数量越多,通信量越大(如4卡同步400MB梯度需传输600MB数据)。带宽不足会严重拖慢训练速度(如1Gbps网卡下200MB梯度同步耗时1.6秒)。优化手段包括:使用高速互联(NVLink/InfiniBand)、ZeRO减少通信量、重叠计算与通信等。实际工程中需避免跨机通信,调整梯度分片策略,并通过工具(如nccl-test
2025-12-02 09:48:19
1290
原创 【网络编程与 Socket】ZeroMQ、Redis PubSub:高吞吐场景的消息传输方式
本文对比了高吞吐场景下的两种消息传输方式:ZeroMQ和Redis PubSub。ZeroMQ作为高性能异步消息库,适合点对点、低延迟通信,支持多种套接字模式;Redis PubSub则内置发布/订阅功能,适合快速搭建广播机制。文章通过代码示例展示了两种技术的实现方式,分析了常见问题及解决方案,并提出了高级应用技巧。在实际应用中,ZeroMQ适合内部高性能通信,Redis PubSub适合跨服务广播,两者结合可构建高效分布式系统。最后指出ZeroMQ侧重传输性能,Redis PubSub侧重易用性但可靠性较
2025-12-01 17:04:57
1245
原创 【网络编程与 Socket】WebSocket:实时视频流推送的底层机制
本文深入解析WebSocket在实时视频流推送中的底层机制与应用。通过对比传统HTTP请求,WebSocket建立持久双向连接,实现低延迟视频帧传输。文章详细介绍了WebSocket的协议升级过程、二进制帧结构特点,并提供了Python实现视频推流服务的完整示例。针对实际应用中的常见问题,给出了帧率控制、数据压缩、断线重连等优化技巧,同时指出WebSocket与WebRTC的适用场景差异。最后强调生产环境中需要配合Nginx反向代理和广播机制来支持多客户端观看,为开发者构建稳定高效的实时视频服务提供实用指导
2025-12-01 12:43:01
1112
原创 【网络编程与 Socket】Protobuf 的作用与数据结构设计:真正的高性能数据协议是什么样的?
Protobuf是Google开发的高性能数据交换协议,相比JSON/XML具有体积小、解析快、强类型约束等优势。文章从基础到实战详细介绍了Protobuf:核心作用是定义数据结构与高性能序列化;通过正反示例讲解常见错误;演示Python项目中的序列化/反序列化流程;分享enum、map、oneof等高级用法;分析在gRPC、微服务等场景的实际应用;揭示其底层Varint编码原理。作为分布式系统的核心通信协议,Protobuf通过二进制格式和严格类型检查,显著提升网络传输效率,已成为现代网络编程的重要工具。
2025-12-01 11:20:42
582
原创 【网络编程与 Socket】gRPC 入门:分布式系统为什么都爱它
本文介绍了gRPC在分布式系统中的优势与应用。gRPC采用HTTP/2协议和Protobuf序列化,具有高性能、跨语言、轻量级等特点,支持流式传输和云原生生态。文章详细讲解了gRPC的核心概念(服务定义、消息类型、客户端代理和服务端实现),并提供了Python实现的示例项目,包括proto文件定义、服务端和客户端代码。针对常见错误给出了调试技巧,并介绍了高级功能如双向流、拦截器和负载均衡。最后分析了gRPC在微服务、K8s等场景的应用及其高效原理,对比了RPC与REST的区别。gRPC作为基于socket的
2025-11-30 21:06:14
1284
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅