20190801中山晨考DAY1 题解

这篇博客分享了2019年中山晨考第一天的算法题解,主要涉及两道题目:T1.水叮当的舞步和T3.刷油漆。在T1中,通过迭代加深和剪枝策略解决矩阵颜色联通问题;T3则是关于限制条件下的柱子染色问题,通过动态规划降低空间复杂度来求解。博客作者提供了部分代码思路,但表示实际实现未成功。
摘要由CSDN通过智能技术生成

好的,万众瞩目的题解来了。

T1.水叮当的舞步

20分,我的迭代加深QAQ。

100分,我的迭代加深加一个剪枝

这里就是一个矩阵,每个矩阵中有0到5六种颜色比如

 

我们可以发现,每次寻找左上角的格子所在的联通块耗费的时间常数巨大。因此我们在这里寻求突破。

我们引入一个N*N的v数组。左上角的格子所在的联通块里的格子标记为1。左上角联通块周围一圈格子标记为2,其它格子标记为0。如果某次选择了颜色c,我们只需要找出标记为2并且颜色为c的格子,向四周扩展,并相应地修改v标记,就可以不断扩大标记为1的区域,最终如果所有格子标记都是1,那么显然找到了答案。

接下来,代码

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<map>
#include<queue>
#include<vector>
#include<algorithm>
#include<cstring>
#define int long long
using namespace std;
inline int read()
{
	int x=0,f=1;
	char c=getchar();
	while(!isdigit(c))
	{
		if(c=='-')
		{
			f=-1;
		}
		c=getchar();
	}
	while(isdigit(c))
	{
		x=x*10+c-'0';
		c=getchar();
	}
	return x*f;
}
int s,n,mp[9][9],mark[9][9];
int xa[4]={1,-1,0,0},ya[4]={0,0,-1,1},used[6];
bool ans;
inline int numa()
{
    int t=0;
    memset(used,0,sizeof(used));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
        	if(!used[mp[i][j]]&&mark[i][j]!=1)
            {
        		used[mp[i][j]]=1;
            	t++;
            }
        }
    }
    return t;
}
void dfs(int a,int
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值