原文地址
写在最前的三点:
1、所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次。
2、实现bfs和dfs都需要解决的一个问题就是如何存储图。一般有两种方法:邻接矩阵和邻接表。这里为简单起
见,均采用邻接矩阵存储,说白了也就是二维数组。
3、本文章的小测试部分的测试实例是下图:
一、深度优先搜索遍历
1、从顶点v出发深度遍历图G的算法
① 访问v
② 依次从顶点v未被访问的邻接点出发深度遍历。
2、一点心得:dfs算法最大特色就在于其递归特性,使得算法代码简洁。但也由于递归使得算法难以理解,原因
在于递归使得初学者难以把握程序运行到何处了!一点建议就是先学好递归,把握函数调用是的种种。
3、算法代码:
- #include
- using
namespace std; -
- int
a[11][11]; - bool
visited[11]; -
- void
store_graph() //邻接矩阵存储图 - {
-
int i,j; -
-
for(i=1;i<=10;i++) -
for(j=1;j<=10;j++) -
cin>>a[i][j]; - }
-
- void
dfs_graph() //深度遍历图 - {
-
void dfs(int v); -
-
memset(visited,false,sizeof(visited)); -
-
for(int i=1;i<=10;i++) //遍历每个顶点是为了防止图不连通时无法访问每个顶点 -
if(visited[i]==false) -
dfs(i); - }
-
- void
dfs(int v) //深度遍历顶点 - {
-
int Adj(int x); -
-
cout<<v<<" "; //访问顶点v -
visited[v]=true; -
-
int adj=Adj(v); -
while(adj!=0) -
{ -
if(visited[adj]==false) -
dfs(adj); //递归调用是实现深度遍历的关键所在 -
-
adj=Adj(v); -
} - }
-
- int
Adj(int x) //求邻接点 - {
-
for(int i=1;i<=10;i++) -
if(a[x][i]==1 && visited[i]==false) -
return i; -
-
return 0; - }
-
- int
main() - {
-
cout<<"初始化图:"<<endl; -
store_graph(); -
-
cout<<"dfs遍历结果:"<<endl; -
dfs_graph(); -
-
return 0; - }
4、小测试
二、广度优先搜索遍历
1、从顶点v出发遍历图G的算法买描述如下:
①访问v
②假设最近一层的访问顶点依次为vi1,vi2,vi3...vik,则依次访问vi1,vi2,vi3...vik的未被访问的邻接点
③重复②知道没有未被访问的邻接点为止
2、一点心得:bfs算法其实就是一种层次遍历算法。从算法描述可以看到该算法要用到队列这一数据结构。我这
里用STL中的实现。该算法由于不是递归算法,所以程序流程是清晰的。
3、算法代码:
- #include
- #include
- using
namespace std; -
- int
a[11][11]; - bool
visited[11]; -
- void
store_graph() - {
-
for(int i=1;i<=10;i++) -
for(int j=1;j<=10;j++) -
cin>>a[i][j]; - }
-
- void
bfs_graph() - {
-
void bfs(int v); -
-
memset(visited,false,sizeof(visited)); -
-
for(int i=1;i<=10;i++) -
if(visited[i]==false) -
bfs(i); - }
-
- void
bfs(int v) - {
-
int Adj(int x); -
-
queue<<span class="datatypes" style="margin: 0px; padding: 0px; border: none; color: rgb(46, 139, 87); font-weight: bold; background-color: inherit;">int> myqueue; -
int adj,temp; -
-
cout<<v<<" "; -
visited[v]=true; -
myqueue.push(v); -
-
while(!myqueue.empty()) //队列非空表示还有顶点未遍历到 -
{ -
temp=myqueue.front(); //获得队列头元素 -
myqueue.pop(); //头元素出对 -
-
adj=Adj(temp); -
while(adj!=0) -
{ -
if(visited[adj]==false) -
{ -
cout<<adj<<" "; -
visited[adj]=true; -
myqueue.push(adj); //进对 -
} -
-
adj=Adj(temp); -
} -
} - }
-
- int
Adj(int x) - {
-
for(int i=1;i<=10;i++) -
if(a[x][i]==1 && visited[i]==false) -
return i; -
-
return 0; - }
-
- int
main() - {
-
cout<<"初始化图:"<<endl; -
store_graph(); -
-
cout<<"bfs遍历结果:"<<endl; -
bfs_graph(); -
-
return 0; - }
4、小测试:
原文地址:http://blog.sina.com.cn/s/blog_779fba530100wqz9.html
BFS与DFS的讨论:BFS:这是一种基于队列这种数据结构的搜索方式,它的特点是由每一个状态可以扩展出许多状态,然后再以此扩展,直到找到目标状态或者队列中头尾指针相遇,即队列中所有状态都已处理完毕。
DFS:基于递归的搜索方式,它的特点是由一个状态拓展一个状态,然后不停拓展,直到找到目标或者无法继续拓展结束一个状态的递归。
优缺点:BFS:对于解决最短或最少问题特别有效,而且寻找深度小,但缺点是内存耗费量大(需要开大量的数组单元用来存储状态)。
总结:不管是BFS还是DFS,它们虽然好用,但由于时间和空间的局限性,以至于它们只能解决数据量小的问题。
各种搜索题目归类:
坐标类型搜索 :这种类型的搜索题目通常来说简单的比较简单,复杂的通常在边界的处理和情况的讨论方面会比较复杂,分析这类问题,我们首先要抓住题目的意思,看具体是怎么建立坐标系(特别重要),然后仔细分析到搜索的每一个阶段是如何通过条件转移到下一个阶段的。确定每一次递归(对于DFS)的回溯和深入条件,对于BFS,要注意每一次入队的条件同时注意判重。要牢牢把握目标状态是一个什么状态,在什么时候结束搜索。还有,DFS过程的参数如何设定,是带参数还是不带参数,带的话各个参数一定要保证能完全的表示一个状态,不会出现一个状态对应多个参数,而这一点对于BFS来说就稍简单些,只需要多设置些变量就可以了。
数值类型搜索:(虽然我也不知道该怎么叫,就起这个名字吧),这种类型的搜索就需要仔细分析分析了,一般来说采用DFS,而且它的终止条件一般都是很明显的,难就难在对于过程的把握,过程的把握类似于坐标类型的搜索(判重、深入、枚举),注意这种类型的搜索通常还要用到剪枝优化,对于那些明显不符合要求的特殊状态我们一定要在之前就去掉它,否则它会像滚雪球一样越滚越大,浪费我们的时间。